defaulta photo of <1> riding a horse on mars
typetext
{
"guidance_scale": "3.5",
"height": 512,
"lora_scales": "0.5",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"num_inference_steps": "50",
"num_outputs": 1,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"scheduler": "DPMSolverMultistep",
"width": 512
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_Qnm**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/realistic_vision_v1.3:85906465af40dd645015e3e675e444037d15ba6d85f580ec2f53f5a7ad8323c1",
{
input: {
guidance_scale: "3.5",
height: 512,
lora_scales: "0.5",
lora_urls: "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
num_inference_steps: "50",
num_outputs: 1,
prompt: "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
scheduler: "DPMSolverMultistep",
width: 512
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_Qnm**********************************
This is your API token. Keep it to yourself.
import replicate
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/realistic_vision_v1.3:85906465af40dd645015e3e675e444037d15ba6d85f580ec2f53f5a7ad8323c1",
input={
"guidance_scale": "3.5",
"height": 512,
"lora_scales": "0.5",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"num_inference_steps": "50",
"num_outputs": 1,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"scheduler": "DPMSolverMultistep",
"width": 512
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_Qnm**********************************
This is your API token. Keep it to yourself.
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cloneofsimo/realistic_vision_v1.3:85906465af40dd645015e3e675e444037d15ba6d85f580ec2f53f5a7ad8323c1",
"input": {
"guidance_scale": "3.5",
"height": 512,
"lora_scales": "0.5",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"num_inference_steps": "50",
"num_outputs": 1,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"scheduler": "DPMSolverMultistep",
"width": 512
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "2msaktejgnclncd3menyburx5y",
"model": "cloneofsimo/realistic_vision_v1.3",
"version": "85906465af40dd645015e3e675e444037d15ba6d85f580ec2f53f5a7ad8323c1",
"input": {
"guidance_scale": "3.5",
"height": 512,
"lora_scales": "0.5",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"num_inference_steps": "50",
"num_outputs": 1,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"scheduler": "DPMSolverMultistep",
"width": 512
},
"logs": "Using seed: 53121\nDownloading LoRA model... from https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors\nEmbedding <s1> replaced to <s0-0>\nEmbedding <s2> replaced to <s0-1>\nSaved at 94ead0a58ea126d5f88d672a70bc05d27f4b9487785bdb3cb116f5deb7e7ecc73f59a9a87db2695d9b0e566c83b2f5145cadfa7b1cf65b2567d14f015a2d7b26.safetensors\nmerging time: 0.0844113826751709\n<s0-0>\n<s0-1>\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<03:00, 3.68s/it]\n 4%|▍ | 2/50 [00:03<01:18, 1.64s/it]\n 6%|▌ | 3/50 [00:04<00:46, 1.01it/s]\n 8%|▊ | 4/50 [00:04<00:31, 1.47it/s]\n 10%|█ | 5/50 [00:04<00:22, 1.96it/s]\n 12%|█▏ | 6/50 [00:04<00:18, 2.43it/s]\n 14%|█▍ | 7/50 [00:04<00:14, 2.89it/s]\n 16%|█▌ | 8/50 [00:05<00:12, 3.30it/s]\n 18%|█▊ | 9/50 [00:05<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:05<00:10, 3.91it/s]\n 22%|██▏ | 11/50 [00:05<00:09, 4.12it/s]\n 24%|██▍ | 12/50 [00:06<00:08, 4.27it/s]\n 26%|██▌ | 13/50 [00:06<00:08, 4.40it/s]\n 28%|██▊ | 14/50 [00:06<00:08, 4.49it/s]\n 30%|███ | 15/50 [00:06<00:07, 4.56it/s]\n 32%|███▏ | 16/50 [00:06<00:07, 4.62it/s]\n 34%|███▍ | 17/50 [00:07<00:07, 4.63it/s]\n 36%|███▌ | 18/50 [00:07<00:06, 4.65it/s]\n 38%|███▊ | 19/50 [00:07<00:06, 4.67it/s]\n 40%|████ | 20/50 [00:07<00:06, 4.68it/s]\n 42%|████▏ | 21/50 [00:07<00:06, 4.68it/s]\n 44%|████▍ | 22/50 [00:08<00:05, 4.67it/s]\n 46%|████▌ | 23/50 [00:08<00:05, 4.69it/s]\n 48%|████▊ | 24/50 [00:08<00:05, 4.70it/s]\n 50%|█████ | 25/50 [00:08<00:05, 4.69it/s]\n 52%|█████▏ | 26/50 [00:08<00:05, 4.69it/s]\n 54%|█████▍ | 27/50 [00:09<00:04, 4.68it/s]\n 56%|█████▌ | 28/50 [00:09<00:04, 4.64it/s]\n 58%|█████▊ | 29/50 [00:09<00:04, 4.66it/s]\n 60%|██████ | 30/50 [00:09<00:04, 4.66it/s]\n 62%|██████▏ | 31/50 [00:10<00:04, 4.68it/s]\n 64%|██████▍ | 32/50 [00:10<00:03, 4.68it/s]\n 66%|██████▌ | 33/50 [00:10<00:03, 4.67it/s]\n 68%|██████▊ | 34/50 [00:10<00:03, 4.68it/s]\n 70%|███████ | 35/50 [00:10<00:03, 4.65it/s]\n 72%|███████▏ | 36/50 [00:11<00:03, 4.66it/s]\n 74%|███████▍ | 37/50 [00:11<00:02, 4.65it/s]\n 76%|███████▌ | 38/50 [00:11<00:02, 4.63it/s]\n 78%|███████▊ | 39/50 [00:11<00:02, 4.65it/s]\n 80%|████████ | 40/50 [00:11<00:02, 4.64it/s]\n 82%|████████▏ | 41/50 [00:12<00:01, 4.63it/s]\n 84%|████████▍ | 42/50 [00:12<00:01, 4.63it/s]\n 86%|████████▌ | 43/50 [00:12<00:01, 4.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 4.61it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 4.62it/s]\n 92%|█████████▏| 46/50 [00:13<00:00, 4.63it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 4.62it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 4.62it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 4.62it/s]\n100%|██████████| 50/50 [00:14<00:00, 4.62it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.53it/s]",
"output": [
"https://replicate.delivery/pbxt/o3tSH9dKjjohIpKgJ4DnkdmUjWBceMnA67fZi67TeZefjBgDC/out-0.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2023-02-07T13:24:26.271572Z",
"started_at": "2023-02-07T13:24:26.429436Z",
"completed_at": "2023-02-07T13:24:48.16994Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/2msaktejgnclncd3menyburx5y/cancel",
"get": "https://api.replicate.com/v1/predictions/2msaktejgnclncd3menyburx5y"
},
"metrics": {
"predict_time": 21.740504,
"total_time": 21.898368
}
}