typetext
{
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 2,
"output_format": "jpg",
"output_quality": 90,
"prompt": "GRMPY cat playing in the snow",
"prompt_strength": 0.8
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PSa**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run heller-software/grumpy-cat using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"heller-software/grumpy-cat:90da34d411d7cbba8d2aea549862dd1766ca3c5229d96259100dd8e3750eba59",
{
input: {
aspect_ratio: "1:1",
extra_lora_scale: 1,
guidance_scale: 3.5,
lora_scale: 1,
model: "dev",
num_inference_steps: 28,
num_outputs: 2,
output_format: "jpg",
output_quality: 90,
prompt: "GRMPY cat playing in the snow",
prompt_strength: 0.8
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PSa**********************************
This is your API token. Keep it to yourself.
import replicate
Run heller-software/grumpy-cat using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"heller-software/grumpy-cat:90da34d411d7cbba8d2aea549862dd1766ca3c5229d96259100dd8e3750eba59",
input={
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 2,
"output_format": "jpg",
"output_quality": 90,
"prompt": "GRMPY cat playing in the snow",
"prompt_strength": 0.8
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PSa**********************************
This is your API token. Keep it to yourself.
Run heller-software/grumpy-cat using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "heller-software/grumpy-cat:90da34d411d7cbba8d2aea549862dd1766ca3c5229d96259100dd8e3750eba59",
"input": {
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 2,
"output_format": "jpg",
"output_quality": 90,
"prompt": "GRMPY cat playing in the snow",
"prompt_strength": 0.8
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "6c97kmhcjnrm40chzttt73z87m",
"model": "heller-software/grumpy-cat",
"version": "90da34d411d7cbba8d2aea549862dd1766ca3c5229d96259100dd8e3750eba59",
"input": {
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 2,
"output_format": "jpg",
"output_quality": 90,
"prompt": "GRMPY cat playing in the snow",
"prompt_strength": 0.8
},
"logs": "Using seed: 49991\nPrompt: GRMPY cat playing in the snow\n[!] txt2img mode\nUsing dev model\nfree=7076179320832\nDownloading weights\n2024-09-17T06:39:32Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpu383cnck/weights url=https://replicate.delivery/yhqm/f48yKpxe2UlOVEpIILaSTSAki0CU0dY1lHQJl3mTjZcZMtdTA/trained_model.tar\n2024-09-17T06:39:53Z | INFO | [ Complete ] dest=/tmp/tmpu383cnck/weights size=\"172 MB\" total_elapsed=21.091s url=https://replicate.delivery/yhqm/f48yKpxe2UlOVEpIILaSTSAki0CU0dY1lHQJl3mTjZcZMtdTA/trained_model.tar\nDownloaded weights in 21.12s\nLoaded LoRAs in 28.18s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.84it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.08it/s]\n 11%|█ | 3/28 [00:01<00:12, 1.96it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.91it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.88it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.86it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.85it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.84it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.84it/s]\n 39%|███▉ | 11/28 [00:05<00:09, 1.83it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s]\n 46%|████▋ | 13/28 [00:06<00:08, 1.83it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.83it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.83it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.83it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.83it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.83it/s]\n 68%|██████▊ | 19/28 [00:10<00:04, 1.83it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.83it/s]\n 75%|███████▌ | 21/28 [00:11<00:03, 1.83it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.83it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.83it/s]\n 86%|████████▌ | 24/28 [00:13<00:02, 1.83it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.83it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.83it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.83it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.83it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.84it/s]",
"output": [
"https://replicate.delivery/yhqm/loC1cthVUfyfJE9JgyoMo5MFBjtveG2uyOgiKj1Vfqv8k12NB/out-0.jpg",
"https://replicate.delivery/yhqm/JEQfmak987WycSeQ27q98wuKYH8Yp8necgTLLfNrFRu8k12NB/out-1.jpg"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2024-09-17T06:39:31.989Z",
"started_at": "2024-09-17T06:39:31.995432Z",
"completed_at": "2024-09-17T06:40:15.860566Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/6c97kmhcjnrm40chzttt73z87m/cancel",
"get": "https://api.replicate.com/v1/predictions/6c97kmhcjnrm40chzttt73z87m",
"web": "https://replicate.com/p/6c97kmhcjnrm40chzttt73z87m"
},
"metrics": {
"predict_time": 43.865133672,
"total_time": 43.871566
}
}
