defaulta photo of a rubber duck ducky
typetext
{
"guidance_scale": 7.5,
"height": 512,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of a rubber duck ducky, cartoon, baking hat",
"prompt_strength": 0.8,
"scheduler": "DDIM",
"width": 512
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_YYC**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run publu/rubberducky using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"publu/rubberducky:8ab090227b436ce29a48230c167c81dc7b3022b35d0930121b210dbca5a614a0",
{
input: {
guidance_scale: 7.5,
height: 512,
num_inference_steps: 50,
num_outputs: 1,
prompt: "a photo of a rubber duck ducky, cartoon, baking hat",
prompt_strength: 0.8,
scheduler: "DDIM",
width: 512
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_YYC**********************************
This is your API token. Keep it to yourself.
import replicate
Run publu/rubberducky using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"publu/rubberducky:8ab090227b436ce29a48230c167c81dc7b3022b35d0930121b210dbca5a614a0",
input={
"guidance_scale": 7.5,
"height": 512,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of a rubber duck ducky, cartoon, baking hat",
"prompt_strength": 0.8,
"scheduler": "DDIM",
"width": 512
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_YYC**********************************
This is your API token. Keep it to yourself.
Run publu/rubberducky using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "publu/rubberducky:8ab090227b436ce29a48230c167c81dc7b3022b35d0930121b210dbca5a614a0",
"input": {
"guidance_scale": 7.5,
"height": 512,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of a rubber duck ducky, cartoon, baking hat",
"prompt_strength": 0.8,
"scheduler": "DDIM",
"width": 512
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "asdxrqg37fbmvdnoolrjz77ka4",
"model": "publu/rubberducky",
"version": "8ab090227b436ce29a48230c167c81dc7b3022b35d0930121b210dbca5a614a0",
"input": {
"guidance_scale": 7.5,
"height": 512,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of a rubber duck ducky, cartoon, baking hat",
"prompt_strength": 0.8,
"scheduler": "DDIM",
"width": 512
},
"logs": "Using seed: 26842\nusing txt2img\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:02<02:16, 2.79s/it]\n 4%|▍ | 2/50 [00:02<01:00, 1.25s/it]\n 6%|▌ | 3/50 [00:03<00:35, 1.31it/s]\n 8%|▊ | 4/50 [00:03<00:24, 1.89it/s]\n 10%|█ | 5/50 [00:03<00:18, 2.49it/s]\n 12%|█▏ | 6/50 [00:03<00:14, 3.08it/s]\n 14%|█▍ | 7/50 [00:03<00:11, 3.59it/s]\n 16%|█▌ | 8/50 [00:04<00:10, 4.07it/s]\n 18%|█▊ | 9/50 [00:04<00:09, 4.46it/s]\n 20%|██ | 10/50 [00:04<00:08, 4.76it/s]\n 22%|██▏ | 11/50 [00:04<00:07, 5.02it/s]\n 24%|██▍ | 12/50 [00:04<00:07, 5.21it/s]\n 26%|██▌ | 13/50 [00:04<00:06, 5.29it/s]\n 28%|██▊ | 14/50 [00:05<00:06, 5.37it/s]\n 30%|███ | 15/50 [00:05<00:06, 5.45it/s]\n 32%|███▏ | 16/50 [00:05<00:06, 5.53it/s]\n 34%|███▍ | 17/50 [00:05<00:05, 5.58it/s]\n 36%|███▌ | 18/50 [00:05<00:05, 5.58it/s]\n 38%|███▊ | 19/50 [00:05<00:05, 5.56it/s]\n 40%|████ | 20/50 [00:06<00:05, 5.59it/s]\n 42%|████▏ | 21/50 [00:06<00:05, 5.64it/s]\n 44%|████▍ | 22/50 [00:06<00:04, 5.64it/s]\n 46%|████▌ | 23/50 [00:06<00:04, 5.66it/s]\n 48%|████▊ | 24/50 [00:06<00:04, 5.66it/s]\n 50%|█████ | 25/50 [00:07<00:04, 5.65it/s]\n 52%|█████▏ | 26/50 [00:07<00:04, 5.62it/s]\n 54%|█████▍ | 27/50 [00:07<00:04, 5.63it/s]\n 56%|█████▌ | 28/50 [00:07<00:03, 5.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:03, 5.66it/s]\n 60%|██████ | 30/50 [00:07<00:03, 5.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:03, 5.65it/s]\n 64%|██████▍ | 32/50 [00:08<00:03, 5.66it/s]\n 66%|██████▌ | 33/50 [00:08<00:03, 5.63it/s]\n 68%|██████▊ | 34/50 [00:08<00:02, 5.62it/s]\n 70%|███████ | 35/50 [00:08<00:02, 5.62it/s]\n 72%|███████▏ | 36/50 [00:08<00:02, 5.64it/s]\n 74%|███████▍ | 37/50 [00:09<00:02, 5.64it/s]\n 76%|███████▌ | 38/50 [00:09<00:02, 5.62it/s]\n 78%|███████▊ | 39/50 [00:09<00:01, 5.61it/s]\n 80%|████████ | 40/50 [00:09<00:01, 5.64it/s]\n 82%|████████▏ | 41/50 [00:09<00:01, 5.64it/s]\n 84%|████████▍ | 42/50 [00:10<00:01, 5.64it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 5.63it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 5.64it/s]\n 90%|█████████ | 45/50 [00:10<00:00, 5.65it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 5.63it/s]\n 94%|█████████▍| 47/50 [00:10<00:00, 5.61it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 5.60it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 5.63it/s]\n100%|██████████| 50/50 [00:11<00:00, 5.64it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.36it/s]",
"output": [
"https://replicate.delivery/pbxt/l6yMGrZw777bLdU9tCSL6994uDICvaGhHNMBP1Jys2DX5HLE/out-0.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2023-03-29T14:10:02.545422Z",
"started_at": "2023-03-29T14:12:30.190574Z",
"completed_at": "2023-03-29T14:12:44.297135Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/asdxrqg37fbmvdnoolrjz77ka4/cancel",
"get": "https://api.replicate.com/v1/predictions/asdxrqg37fbmvdnoolrjz77ka4"
},
"metrics": {
"predict_time": 14.106561,
"total_time": 161.751713
}
}