defaulta photo of <1> riding a horse on mars
typetext
{
"adapter_type": "sketch",
"clip_interrogator": true,
"guidance_scale": 7.5,
"height": 512,
"lora_scales": "0.5",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "analog style photo of a man",
"prompt_strength": 0.8,
"remove_background": false,
"scheduler": "DPMSolverMultistep",
"width": 512
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_UKh**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run joyanujoy/analog_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"joyanujoy/analog_diffusion:eff6035c43836061271808afa1d8ed256e603043489093a9b35bfee9cfe53e48",
{
input: {
adapter_type: "sketch",
clip_interrogator: true,
guidance_scale: 7.5,
height: 512,
lora_scales: "0.5",
num_inference_steps: 50,
num_outputs: 1,
prompt: "analog style photo of a man",
prompt_strength: 0.8,
remove_background: false,
scheduler: "DPMSolverMultistep",
width: 512
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_UKh**********************************
This is your API token. Keep it to yourself.
import replicate
Run joyanujoy/analog_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"joyanujoy/analog_diffusion:eff6035c43836061271808afa1d8ed256e603043489093a9b35bfee9cfe53e48",
input={
"adapter_type": "sketch",
"clip_interrogator": True,
"guidance_scale": 7.5,
"height": 512,
"lora_scales": "0.5",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "analog style photo of a man",
"prompt_strength": 0.8,
"remove_background": False,
"scheduler": "DPMSolverMultistep",
"width": 512
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_UKh**********************************
This is your API token. Keep it to yourself.
Run joyanujoy/analog_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "joyanujoy/analog_diffusion:eff6035c43836061271808afa1d8ed256e603043489093a9b35bfee9cfe53e48",
"input": {
"adapter_type": "sketch",
"clip_interrogator": true,
"guidance_scale": 7.5,
"height": 512,
"lora_scales": "0.5",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "analog style photo of a man",
"prompt_strength": 0.8,
"remove_background": false,
"scheduler": "DPMSolverMultistep",
"width": 512
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "csascvfyijbt3pjmvrfhfyvrja",
"model": "joyanujoy/analog_diffusion",
"version": "eff6035c43836061271808afa1d8ed256e603043489093a9b35bfee9cfe53e48",
"input": {
"adapter_type": "sketch",
"clip_interrogator": true,
"guidance_scale": 7.5,
"height": 512,
"lora_scales": "0.5",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "analog style photo of a man",
"prompt_strength": 0.8,
"remove_background": false,
"scheduler": "DPMSolverMultistep",
"width": 512
},
"logs": "Using seed: 55601\nGenerating image of 512 x 512 with prompt: analog style photo of a man\nNo LoRA models provided, using default model...\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<01:34, 1.93s/it]\n 6%|▌ | 3/50 [00:02<00:26, 1.78it/s]\n 10%|█ | 5/50 [00:02<00:14, 3.19it/s]\n 14%|█▍ | 7/50 [00:02<00:09, 4.69it/s]\n 18%|█▊ | 9/50 [00:02<00:06, 6.07it/s]\n 22%|██▏ | 11/50 [00:02<00:05, 7.35it/s]\n 26%|██▌ | 13/50 [00:02<00:04, 8.57it/s]\n 30%|███ | 15/50 [00:03<00:03, 9.66it/s]\n 34%|███▍ | 17/50 [00:03<00:03, 10.59it/s]\n 38%|███▊ | 19/50 [00:03<00:02, 11.20it/s]\n 42%|████▏ | 21/50 [00:03<00:02, 11.42it/s]\n 46%|████▌ | 23/50 [00:03<00:02, 11.58it/s]\n 50%|█████ | 25/50 [00:03<00:02, 11.88it/s]\n 54%|█████▍ | 27/50 [00:04<00:01, 11.91it/s]\n 58%|█████▊ | 29/50 [00:04<00:01, 12.21it/s]\n 62%|██████▏ | 31/50 [00:04<00:01, 12.08it/s]\n 66%|██████▌ | 33/50 [00:04<00:01, 12.26it/s]\n 70%|███████ | 35/50 [00:04<00:01, 12.02it/s]\n 74%|███████▍ | 37/50 [00:04<00:01, 12.33it/s]\n 78%|███████▊ | 39/50 [00:04<00:00, 12.19it/s]\n 82%|████████▏ | 41/50 [00:05<00:00, 12.07it/s]\n 86%|████████▌ | 43/50 [00:05<00:00, 12.31it/s]\n 90%|█████████ | 45/50 [00:05<00:00, 12.61it/s]\n 94%|█████████▍| 47/50 [00:05<00:00, 12.44it/s]\n 98%|█████████▊| 49/50 [00:05<00:00, 13.00it/s]\n100%|██████████| 50/50 [00:05<00:00, 8.56it/s]",
"output": [
"https://replicate.delivery/pbxt/0iNkiPzqlGbvHpKLkdDga7q6FWd2gZeKNVj71G2ibltvZSVIA/out-0.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2023-03-23T18:28:19.794684Z",
"started_at": "2023-03-23T18:30:48.148786Z",
"completed_at": "2023-03-23T18:30:55.965066Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/csascvfyijbt3pjmvrfhfyvrja/cancel",
"get": "https://api.replicate.com/v1/predictions/csascvfyijbt3pjmvrfhfyvrja"
},
"metrics": {
"predict_time": 7.81628,
"total_time": 156.170382
}
}