typetext
{
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 1,
"output_format": "webp",
"output_quality": 90,
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"prompt_strength": 0.8
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_4lN**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
{
input: {
aspect_ratio: "1:1",
extra_lora_scale: 1,
guidance_scale: 3.5,
lora_scale: 1,
model: "dev",
num_inference_steps: 28,
num_outputs: 1,
output_format: "webp",
output_quality: 90,
prompt: "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
prompt_strength: 0.8
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_4lN**********************************
This is your API token. Keep it to yourself.
import replicate
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
input={
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 1,
"output_format": "webp",
"output_quality": 90,
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"prompt_strength": 0.8
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_4lN**********************************
This is your API token. Keep it to yourself.
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
"input": {
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 1,
"output_format": "webp",
"output_quality": 90,
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"prompt_strength": 0.8
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "fyyfpwmf0srm20cjsfw8jncz4m",
"model": "maczzzzzzz/pixolpepe",
"version": "4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
"input": {
"aspect_ratio": "1:1",
"extra_lora_scale": 1,
"guidance_scale": 3.5,
"lora_scale": 1,
"model": "dev",
"num_inference_steps": 28,
"num_outputs": 1,
"output_format": "webp",
"output_quality": 90,
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"prompt_strength": 0.8
},
"logs": "Using seed: 28250\nPrompt: pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes\n[!] txt2img mode\nUsing dev model\nfree=8537463918592\nDownloading weights\n2024-10-27T03:15:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk2yskt3x/weights url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar\n2024-10-27T03:15:19Z | INFO | [ Complete ] dest=/tmp/tmpk2yskt3x/weights size=\"172 MB\" total_elapsed=1.621s url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar\nDownloaded weights in 1.65s\nLoaded LoRAs in 2.24s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]",
"output": [
"https://replicate.delivery/yhqm/TimLrACl25bhL1RPboPThW8xk9hoCZbAvH1Y2uZoajTUit6E/out-0.webp"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2024-10-27T03:15:17.382Z",
"started_at": "2024-10-27T03:15:17.773233Z",
"completed_at": "2024-10-27T03:15:29.996671Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/fyyfpwmf0srm20cjsfw8jncz4m/cancel",
"get": "https://api.replicate.com/v1/predictions/fyyfpwmf0srm20cjsfw8jncz4m",
"stream": "https://stream.replicate.com/v1/files/wcdb-327dyykd27k4gd6mqioup46v6qiekmma5t5ogugfaeinpdeuunya",
"web": "https://replicate.com/p/fyyfpwmf0srm20cjsfw8jncz4m"
},
"metrics": {
"predict_time": 12.223437820000001,
"total_time": 12.614671
}
}