typefile
{
"creativity": 0.35,
"dynamic": 6,
"image": "https://replicate.delivery/pbxt/KZuPuU0s6msG4LI83c0uhMrkVg9bPvKDWbhZesQ0I3DKmPed/Diffaiart_LandscapexU_00001_.png",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 24,
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"resemblance": 0.6,
"scale_factor": 2,
"scheduler": "DPM++ 3M SDE Karras",
"seed": 1337
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_FhN**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"philz1337x/clarity-upscaler:0f7cc6c487551b0b9a4063de32002e6663249de8ff23c367531d7a02ceeffc65",
{
input: {
creativity: 0.35,
dynamic: 6,
image: "https://replicate.delivery/pbxt/KZuPuU0s6msG4LI83c0uhMrkVg9bPvKDWbhZesQ0I3DKmPed/Diffaiart_LandscapexU_00001_.png",
negative_prompt: "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
num_inference_steps: 24,
prompt: "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
resemblance: 0.6,
scale_factor: 2,
scheduler: "DPM++ 3M SDE Karras",
seed: 1337
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_FhN**********************************
This is your API token. Keep it to yourself.
import replicate
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"philz1337x/clarity-upscaler:0f7cc6c487551b0b9a4063de32002e6663249de8ff23c367531d7a02ceeffc65",
input={
"creativity": 0.35,
"dynamic": 6,
"image": "https://replicate.delivery/pbxt/KZuPuU0s6msG4LI83c0uhMrkVg9bPvKDWbhZesQ0I3DKmPed/Diffaiart_LandscapexU_00001_.png",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 24,
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"resemblance": 0.6,
"scale_factor": 2,
"scheduler": "DPM++ 3M SDE Karras",
"seed": 1337
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_FhN**********************************
This is your API token. Keep it to yourself.
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "philz1337x/clarity-upscaler:0f7cc6c487551b0b9a4063de32002e6663249de8ff23c367531d7a02ceeffc65",
"input": {
"creativity": 0.35,
"dynamic": 6,
"image": "https://replicate.delivery/pbxt/KZuPuU0s6msG4LI83c0uhMrkVg9bPvKDWbhZesQ0I3DKmPed/Diffaiart_LandscapexU_00001_.png",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 24,
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"resemblance": 0.6,
"scale_factor": 2,
"scheduler": "DPM++ 3M SDE Karras",
"seed": 1337
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Loading...
{
"id": "h5y4fr3bdzblp6sk54kmk4fupu",
"model": "philz1337x/clarity-upscaler",
"version": "0f7cc6c487551b0b9a4063de32002e6663249de8ff23c367531d7a02ceeffc65",
"input": {
"creativity": 0.35,
"dynamic": 6,
"image": "https://replicate.delivery/pbxt/KZuPuU0s6msG4LI83c0uhMrkVg9bPvKDWbhZesQ0I3DKmPed/Diffaiart_LandscapexU_00001_.png",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 24,
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"resemblance": 0.6,
"scale_factor": 2,
"scheduler": "DPM++ 3M SDE Karras",
"seed": 1337
},
"logs": "[Tiled Diffusion] upscaling image with 4x-UltraSharp...\n[Tiled Diffusion] ControlNet found, support is enabled.\n2024-03-16 06:13:03,086 - ControlNet - \u001b[0;32mINFO\u001b[0m - unit_separate = False, style_align = False\n2024-03-16 06:13:03,086 - ControlNet - \u001b[0;32mINFO\u001b[0m - Loading model from cache: control_v11f1e_sd15_tile\n2024-03-16 06:13:03,183 - ControlNet - \u001b[0;32mINFO\u001b[0m - Using preprocessor: tile_resample\n2024-03-16 06:13:03,183 - ControlNet - \u001b[0;32mINFO\u001b[0m - preprocessor resolution = 6144\n2024-03-16 06:13:03,909 - ControlNet - \u001b[0;32mINFO\u001b[0m - ControlNet Hooked - Time = 0.8282740116119385\nMultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 48, Batch size: 8, Tile batches: 6 (ext: ContrlNet)\nMultiDiffusion Sampling: 0%| | 0/42 [00:00<?, ?it/s]\nMultiDiffusion Sampling: 0%| | 0/7 [01:10<?, ?it/s]\n[Tiled VAE]: input_size: torch.Size([1, 3, 6144, 6144]), tile_size: 3072, padding: 32\n[Tiled VAE]: split to 2x2 = 4 tiles. Optimal tile size 3040x3040, original tile size 3072x3072\n[Tiled VAE]: Fast mode enabled, estimating group norm parameters on 3072 x 3072 image\n[Tiled VAE]: Executing Encoder Task Queue: 0%| | 0/364 [00:00<?, ?it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 5%|▌ | 19/364 [00:00<00:16, 21.49it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 6%|▌ | 22/364 [00:01<00:17, 19.80it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 10%|█ | 38/364 [00:01<00:17, 18.97it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 11%|█ | 40/364 [00:02<00:18, 17.40it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 16%|█▌ | 57/364 [00:03<00:16, 18.47it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 16%|█▌ | 59/364 [00:03<00:17, 17.22it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 21%|██ | 76/364 [00:04<00:15, 18.30it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 22%|██▏ | 80/364 [00:04<00:18, 15.64it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 23%|██▎ | 83/364 [00:05<00:21, 12.88it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 24%|██▎ | 86/364 [00:05<00:25, 10.97it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 25%|██▌ | 92/364 [00:05<00:20, 13.15it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 26%|██▌ | 94/364 [00:06<00:33, 8.14it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 27%|██▋ | 97/364 [00:06<00:29, 9.16it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 27%|██▋ | 99/364 [00:07<00:45, 5.82it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 28%|██▊ | 102/364 [00:08<00:37, 7.06it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 29%|██▊ | 104/364 [00:08<00:53, 4.87it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 29%|██▉ | 107/364 [00:09<00:41, 6.20it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 30%|██▉ | 109/364 [00:09<00:44, 5.75it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 31%|███ | 112/364 [00:10<00:44, 5.70it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 32%|███▏ | 115/364 [00:10<00:46, 5.40it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 32%|███▏ | 118/364 [00:11<00:45, 5.36it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 33%|███▎ | 121/364 [00:11<00:34, 7.11it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 34%|███▍ | 124/364 [00:11<00:28, 8.54it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 35%|███▍ | 126/364 [00:11<00:27, 8.68it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 35%|███▌ | 128/364 [00:11<00:25, 9.09it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 36%|███▌ | 130/364 [00:12<00:24, 9.50it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 36%|███▋ | 132/364 [00:12<00:24, 9.40it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 37%|███▋ | 134/364 [00:12<00:25, 9.11it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 37%|███▋ | 136/364 [00:12<00:23, 9.59it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 38%|███▊ | 138/364 [00:13<00:23, 9.44it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 38%|███▊ | 139/364 [00:13<00:28, 7.94it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 39%|███▉ | 142/364 [00:13<00:21, 10.21it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 40%|███▉ | 144/364 [00:13<00:22, 9.86it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 41%|████ | 148/364 [00:13<00:18, 11.51it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 41%|████▏ | 151/364 [00:14<00:18, 11.49it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 42%|████▏ | 154/364 [00:14<00:18, 11.26it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 44%|████▍ | 160/364 [00:14<00:11, 17.12it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 45%|████▍ | 162/364 [00:15<00:18, 11.05it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 45%|████▌ | 165/364 [00:15<00:14, 13.33it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 46%|████▌ | 167/364 [00:15<00:22, 8.92it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 47%|████▋ | 170/364 [00:15<00:17, 11.29it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 47%|████▋ | 172/364 [00:16<00:26, 7.21it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 48%|████▊ | 175/364 [00:16<00:19, 9.56it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 49%|████▊ | 177/364 [00:16<00:21, 8.68it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 49%|████▉ | 180/364 [00:17<00:20, 9.11it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 50%|█████ | 183/364 [00:17<00:19, 9.08it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 51%|█████ | 186/364 [00:17<00:19, 9.10it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 53%|█████▎ | 192/364 [00:17<00:12, 13.79it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 54%|█████▎ | 195/364 [00:18<00:11, 14.83it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 54%|█████▍ | 198/364 [00:18<00:09, 16.90it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 55%|█████▌ | 201/364 [00:18<00:09, 16.51it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 56%|█████▌ | 204/364 [00:18<00:08, 18.44it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 57%|█████▋ | 207/364 [00:18<00:08, 17.53it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 58%|█████▊ | 210/364 [00:18<00:07, 19.37it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 59%|█████▉ | 215/364 [00:18<00:05, 25.73it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 60%|██████ | 219/364 [00:19<00:05, 25.95it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 62%|██████▏ | 225/364 [00:19<00:04, 33.52it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 63%|██████▎ | 230/364 [00:19<00:03, 33.65it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 65%|██████▍ | 235/364 [00:19<00:03, 33.51it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 66%|██████▌ | 240/364 [00:19<00:03, 33.21it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 68%|██████▊ | 248/364 [00:19<00:03, 38.59it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 70%|██████▉ | 254/364 [00:19<00:02, 38.08it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 72%|███████▏ | 261/364 [00:20<00:02, 44.99it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 73%|███████▎ | 266/364 [00:20<00:02, 41.62it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 74%|███████▍ | 271/364 [00:20<00:02, 38.65it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 76%|███████▌ | 276/364 [00:20<00:02, 36.74it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 78%|███████▊ | 283/364 [00:20<00:02, 38.76it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 79%|███████▉ | 289/364 [00:20<00:01, 43.32it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 81%|████████ | 294/364 [00:20<00:01, 40.61it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 82%|████████▏ | 299/364 [00:21<00:01, 38.02it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 84%|████████▎ | 304/364 [00:21<00:01, 36.06it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 85%|████████▌ | 310/364 [00:21<00:03, 17.19it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 86%|████████▌ | 313/364 [00:23<00:05, 8.59it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 87%|████████▋ | 316/364 [00:24<00:08, 5.87it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 88%|████████▊ | 319/364 [00:25<00:09, 4.57it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 88%|████████▊ | 321/364 [00:25<00:08, 5.26it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 89%|████████▊ | 323/364 [00:26<00:10, 3.85it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 90%|█████████ | 328/364 [00:26<00:05, 6.20it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 92%|█████████▏| 334/364 [00:26<00:03, 9.52it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 94%|█████████▎| 341/364 [00:26<00:01, 14.64it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 95%|█████████▍| 345/364 [00:26<00:01, 17.38it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 97%|█████████▋| 352/364 [00:27<00:00, 23.86it/s]\u001b[A\n[Tiled VAE]: Executing Encoder Task Queue: 100%|██████████| 364/364 [00:27<00:00, 13.38it/s]\n[Tiled VAE]: Done in 28.383s, max VRAM alloc 26698.884 MB\n 0%| | 0/9 [00:00<?, ?it/s]\u001b[A\nMultiDiffusion Sampling: 2%|▏ | 1/42 [00:32<21:54, 32.05s/it]\nMultiDiffusion Sampling: 5%|▍ | 2/42 [00:37<11:00, 16.52s/it]\nMultiDiffusion Sampling: 7%|▋ | 3/42 [00:43<07:30, 11.56s/it]\nMultiDiffusion Sampling: 10%|▉ | 4/42 [00:49<05:50, 9.23s/it]\nMultiDiffusion Sampling: 12%|█▏ | 5/42 [00:54<04:53, 7.94s/it]\nTotal progress: 0%| | 0/9 [00:00<?, ?it/s]\u001b[A\n 11%|█ | 1/9 [00:33<04:31, 33.92s/it]\u001b[A\n 22%|██▏ | 2/9 [01:07<03:57, 33.93s/it]\u001b[A\nMultiDiffusion Sampling: 14%|█▍ | 6/42 [01:45<13:31, 22.55s/it]\nMultiDiffusion Sampling: 17%|█▋ | 7/42 [01:51<09:55, 17.02s/it]\nMultiDiffusion Sampling: 19%|█▉ | 8/42 [01:56<07:35, 13.40s/it]\nMultiDiffusion Sampling: 21%|██▏ | 9/42 [02:02<06:02, 10.98s/it]\nTotal progress: 22%|██▏ | 2/9 [00:33<01:58, 16.97s/it]\u001b[A\nMultiDiffusion Sampling: 24%|██▍ | 10/42 [02:08<04:58, 9.34s/it]\n 33%|███▎ | 3/9 [01:41<03:23, 33.93s/it]\u001b[A\nMultiDiffusion Sampling: 26%|██▌ | 11/42 [02:19<05:08, 9.94s/it]\nMultiDiffusion Sampling: 29%|██▊ | 12/42 [02:25<04:19, 8.64s/it]\nMultiDiffusion Sampling: 31%|███ | 13/42 [02:30<03:44, 7.74s/it]\nMultiDiffusion Sampling: 33%|███▎ | 14/42 [02:36<03:19, 7.11s/it]\nTotal progress: 33%|███▎ | 3/9 [01:07<02:24, 24.04s/it]\u001b[A\nMultiDiffusion Sampling: 36%|███▌ | 15/42 [02:42<03:00, 6.67s/it]\n 44%|████▍ | 4/9 [02:15<02:49, 33.94s/it]\u001b[A\nMultiDiffusion Sampling: 38%|███▊ | 16/42 [02:53<03:29, 8.07s/it]\nMultiDiffusion Sampling: 40%|████ | 17/42 [02:59<03:03, 7.35s/it]\nMultiDiffusion Sampling: 43%|████▎ | 18/42 [03:04<02:44, 6.84s/it]\nMultiDiffusion Sampling: 45%|████▌ | 19/42 [03:10<02:29, 6.48s/it]\nTotal progress: 44%|████▍ | 4/9 [01:41<02:18, 27.74s/it]\u001b[A\nMultiDiffusion Sampling: 48%|████▊ | 20/42 [03:16<02:17, 6.24s/it]\n 56%|█████▌ | 5/9 [02:49<02:15, 33.95s/it]\u001b[A\nMultiDiffusion Sampling: 50%|█████ | 21/42 [03:27<02:43, 7.76s/it]\nMultiDiffusion Sampling: 52%|█████▏ | 22/42 [03:33<02:22, 7.13s/it]\nMultiDiffusion Sampling: 55%|█████▍ | 23/42 [03:38<02:07, 6.69s/it]\nMultiDiffusion Sampling: 57%|█████▋ | 24/42 [03:44<01:54, 6.38s/it]\nTotal progress: 56%|█████▌ | 5/9 [02:15<01:59, 29.90s/it]\u001b[A\nMultiDiffusion Sampling: 60%|█████▉ | 25/42 [03:50<01:44, 6.16s/it]\n 67%|██████▋ | 6/9 [03:23<01:41, 33.95s/it]\u001b[A\nMultiDiffusion Sampling: 62%|██████▏ | 26/42 [04:01<02:03, 7.71s/it]\nMultiDiffusion Sampling: 64%|██████▍ | 27/42 [04:07<01:46, 7.09s/it]\nMultiDiffusion Sampling: 67%|██████▋ | 28/42 [04:12<01:33, 6.66s/it]\nMultiDiffusion Sampling: 69%|██████▉ | 29/42 [04:18<01:22, 6.36s/it]\nTotal progress: 67%|██████▋ | 6/9 [02:49<01:33, 31.25s/it]\u001b[A\nMultiDiffusion Sampling: 71%|███████▏ | 30/42 [04:23<01:13, 6.15s/it]\n 78%|███████▊ | 7/9 [03:57<01:07, 33.95s/it]\u001b[A\nMultiDiffusion Sampling: 74%|███████▍ | 31/42 [04:35<01:24, 7.70s/it]\nMultiDiffusion Sampling: 76%|███████▌ | 32/42 [04:40<01:10, 7.09s/it]\nMultiDiffusion Sampling: 79%|███████▊ | 33/42 [04:46<00:59, 6.66s/it]\nMultiDiffusion Sampling: 81%|████████ | 34/42 [04:52<00:50, 6.36s/it]\nTotal progress: 78%|███████▊ | 7/9 [03:23<01:04, 32.12s/it]\u001b[A\nMultiDiffusion Sampling: 83%|████████▎ | 35/42 [04:57<00:43, 6.15s/it]\n 89%|████████▉ | 8/9 [04:31<00:33, 33.96s/it]\u001b[A\nMultiDiffusion Sampling: 86%|████████▌ | 36/42 [05:09<00:46, 7.70s/it]\nMultiDiffusion Sampling: 88%|████████▊ | 37/42 [05:14<00:35, 7.09s/it]\nMultiDiffusion Sampling: 90%|█████████ | 38/42 [05:20<00:26, 6.66s/it]\nMultiDiffusion Sampling: 93%|█████████▎| 39/42 [05:26<00:19, 6.36s/it]\nTotal progress: 89%|████████▉ | 8/9 [03:57<00:32, 32.70s/it]\u001b[A\nMultiDiffusion Sampling: 95%|█████████▌| 40/42 [05:31<00:12, 6.15s/it]\n100%|██████████| 9/9 [05:05<00:00, 33.95s/it]\u001b[A\n100%|██████████| 9/9 [05:05<00:00, 33.95s/it]\nTotal progress: 100%|██████████| 9/9 [04:31<00:00, 33.09s/it]\u001b[A[Tiled VAE]: input_size: torch.Size([1, 4, 768, 768]), tile_size: 192, padding: 11\n[Tiled VAE]: split to 4x4 = 16 tiles. Optimal tile size 192x192, original tile size 192x192\n[Tiled VAE]: Fast mode enabled, estimating group norm parameters on 192 x 192 image\n[Tiled VAE]: Executing Decoder Task Queue: 0%| | 0/1968 [00:00<?, ?it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 6%|▋ | 124/1968 [00:00<00:10, 174.32it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 13%|█▎ | 247/1968 [00:01<00:09, 175.86it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 19%|█▉ | 370/1968 [00:02<00:09, 176.08it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 25%|██▌ | 493/1968 [00:02<00:07, 184.70it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 31%|███▏ | 616/1968 [00:03<00:07, 181.87it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 38%|███▊ | 739/1968 [00:04<00:06, 180.24it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 44%|████▍ | 862/1968 [00:04<00:06, 179.13it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 50%|█████ | 985/1968 [00:05<00:05, 185.32it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 56%|█████▋ | 1108/1968 [00:06<00:04, 182.64it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 63%|██████▎ | 1231/1968 [00:06<00:04, 180.90it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 69%|██████▉ | 1354/1968 [00:07<00:03, 179.63it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 75%|███████▌ | 1477/1968 [00:08<00:02, 185.16it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 81%|████████▏ | 1600/1968 [00:08<00:01, 189.34it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 88%|████████▊ | 1723/1968 [00:09<00:01, 192.42it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 94%|█████████▍| 1846/1968 [00:09<00:00, 194.62it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 100%|██████████| 1968/1968 [00:10<00:00, 187.32it/s]\n[Tiled VAE]: Done in 11.719s, max VRAM alloc 12719.975 MB\nTotal progress: 100%|██████████| 9/9 [04:44<00:00, 33.09s/it]\u001b[A\nTotal progress: 100%|██████████| 9/9 [04:44<00:00, 31.63s/it]",
"output": [
"https://replicate.delivery/pbxt/y0fLloIYzrReTksPbIOtWJl58hHdv1o1fWWLeGeIzTuT71FUC/1337-17a85e88-e35d-11ee-bac3-b220ffff4344.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2024-03-16T06:12:21.263234Z",
"started_at": "2024-03-16T06:12:30.882616Z",
"completed_at": "2024-03-16T06:19:08.977348Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/h5y4fr3bdzblp6sk54kmk4fupu/cancel",
"get": "https://api.replicate.com/v1/predictions/h5y4fr3bdzblp6sk54kmk4fupu"
},
"metrics": {
"predict_time": 398.094732,
"total_time": 407.714114
}
}