typetext
{
"max_new_tokens": 1024,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
"temperature": 1,
"top_k": 50,
"top_p": 0.95
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_JBq**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
{
input: {
max_new_tokens: 1024,
message: "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
temperature: 1,
top_k: 50,
top_p: 0.95
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_JBq**********************************
This is your API token. Keep it to yourself.
import replicate
Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
input={
"max_new_tokens": 1024,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
"temperature": 1,
"top_k": 50,
"top_p": 0.95
}
)
# The nateraw/codellama-7b-instruct-hf model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/nateraw/codellama-7b-instruct-hf/api#output-schema
print(item, end="")
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_JBq**********************************
This is your API token. Keep it to yourself.
Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
"input": {
"max_new_tokens": 1024,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \\"profit\\" column using the \\"date\\" column.",
"temperature": 1,
"top_k": 50,
"top_p": 0.95
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Here is an example of how you can read in a csv file and calculate the 3 day rolling average of the "profit" column using the "date" column in Python:
```
import pandas as pd
# Read in the csv file
df = pd.read_csv('your_data.csv')
# Calculate the 3 day rolling average of the "profit" column using the "date" column
df['3_day_rolling_average'] = df['profit'].rolling(window=3).mean()
# Print the results
print(df)
```
This will give you the 3 day rolling average of the "profit" column for each row in the data frame.
Alternatively, you can also use the `rolling_mean` function from the `pandas` library:
```
df['3_day_rolling_average'] = df.rolling_mean(window=3, column='profit', date_column='date')
```
This will give you the same result as the previous code.{
"id": "mv356a3bobm43ngw7rt6toz7ay",
"model": "nateraw/codellama-7b-instruct-hf",
"version": "efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
"input": {
"max_new_tokens": 1024,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
"temperature": 1,
"top_k": 50,
"top_p": 0.95
},
"logs": "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.",
"output": [
"",
" ",
"Here ",
"is ",
"an ",
"example ",
"of ",
"how ",
"you ",
"can ",
"read ",
"in ",
"a ",
"csv ",
"file ",
"and ",
"calculate ",
"the ",
"",
"3 ",
"day ",
"rolling ",
"average ",
"of ",
"the ",
"",
"",
"",
"\"profit\" ",
"column ",
"using ",
"the ",
"",
"",
"\"date\" ",
"column ",
"in ",
"",
"Python:\n",
"",
"```\n",
"",
"import ",
"pandas ",
"as ",
"pd\n",
"\n",
"",
"# ",
"Read ",
"in ",
"the ",
"csv ",
"file\n",
"",
"df ",
"= ",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"pd.read_csv('your_data.csv')\n",
"\n",
"",
"# ",
"",
"Calculate ",
"the ",
"",
"3 ",
"day ",
"rolling ",
"average ",
"of ",
"the ",
"",
"",
"",
"\"profit\" ",
"column ",
"using ",
"the ",
"",
"",
"\"date\" ",
"column\n",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"df['3_day_rolling_average'] ",
"= ",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"df['profit'].rolling(window=3).mean()\n",
"\n",
"",
"# ",
"Print ",
"the ",
"results\n",
"",
"",
"",
"",
"print(df)\n",
"",
"```\n",
"",
"This ",
"will ",
"give ",
"you ",
"the ",
"",
"3 ",
"day ",
"rolling ",
"average ",
"of ",
"the ",
"",
"",
"",
"\"profit\" ",
"column ",
"for ",
"each ",
"row ",
"in ",
"the ",
"data ",
"",
"frame.\n",
"\n",
"",
"",
"",
"",
"Alternatively, ",
"you ",
"can ",
"also ",
"use ",
"the ",
"",
"",
"",
"",
"`rolling_mean` ",
"function ",
"from ",
"the ",
"",
"",
"`pandas` ",
"",
"library:\n",
"",
"```\n",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"df['3_day_rolling_average'] ",
"= ",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"df.rolling_mean(window=3, ",
"",
"",
"",
"",
"column='profit', ",
"",
"",
"",
"",
"",
"date_column='date')\n",
"",
"```\n",
"",
"This ",
"will ",
"give ",
"you ",
"the ",
"same ",
"result ",
"as ",
"the ",
"previous ",
"",
"",
"code."
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2023-09-19T05:45:29.123023Z",
"started_at": "2023-09-19T05:45:30.22353Z",
"completed_at": "2023-09-19T05:45:45.134834Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/mv356a3bobm43ngw7rt6toz7ay/cancel",
"get": "https://api.replicate.com/v1/predictions/mv356a3bobm43ngw7rt6toz7ay"
},
"metrics": {
"predict_time": 14.911304,
"total_time": 16.011811
}
}