defaultAn astronaut riding a rainbow unicorn
typetext
{
"apply_watermark": true,
"guidance_scale": 7.5,
"height": 1024,
"high_noise_frac": 0.8,
"image": "https://replicate.delivery/pbxt/KwLoUsaZVbACMqyxFdGkqhxUGUXbf4U5X25hAq2yYGhptBC6/mask.png",
"lora_scale": 0.6,
"negative_prompt": "",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of TOK",
"prompt_strength": 0.8,
"refine": "no_refiner",
"scheduler": "K_EULER",
"width": 1024
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_LUb**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run raviadi12/diffusion-testing using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"raviadi12/diffusion-testing:2bccf2b55b92722cc8f6aa12b49af6da4557607b3ca9d3492a211cbd0697a15c",
{
input: {
apply_watermark: true,
guidance_scale: 7.5,
height: 1024,
high_noise_frac: 0.8,
image: "https://replicate.delivery/pbxt/KwLoUsaZVbACMqyxFdGkqhxUGUXbf4U5X25hAq2yYGhptBC6/mask.png",
lora_scale: 0.6,
negative_prompt: "",
num_inference_steps: 50,
num_outputs: 1,
prompt: "a photo of TOK",
prompt_strength: 0.8,
refine: "no_refiner",
scheduler: "K_EULER",
width: 1024
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_LUb**********************************
This is your API token. Keep it to yourself.
import replicate
Run raviadi12/diffusion-testing using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"raviadi12/diffusion-testing:2bccf2b55b92722cc8f6aa12b49af6da4557607b3ca9d3492a211cbd0697a15c",
input={
"apply_watermark": True,
"guidance_scale": 7.5,
"height": 1024,
"high_noise_frac": 0.8,
"image": "https://replicate.delivery/pbxt/KwLoUsaZVbACMqyxFdGkqhxUGUXbf4U5X25hAq2yYGhptBC6/mask.png",
"lora_scale": 0.6,
"negative_prompt": "",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of TOK",
"prompt_strength": 0.8,
"refine": "no_refiner",
"scheduler": "K_EULER",
"width": 1024
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_LUb**********************************
This is your API token. Keep it to yourself.
Run raviadi12/diffusion-testing using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "raviadi12/diffusion-testing:2bccf2b55b92722cc8f6aa12b49af6da4557607b3ca9d3492a211cbd0697a15c",
"input": {
"apply_watermark": true,
"guidance_scale": 7.5,
"height": 1024,
"high_noise_frac": 0.8,
"image": "https://replicate.delivery/pbxt/KwLoUsaZVbACMqyxFdGkqhxUGUXbf4U5X25hAq2yYGhptBC6/mask.png",
"lora_scale": 0.6,
"negative_prompt": "",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of TOK",
"prompt_strength": 0.8,
"refine": "no_refiner",
"scheduler": "K_EULER",
"width": 1024
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "r7pxe69fg9rgj0cfhdyag4mpx8",
"model": "raviadi12/diffusion-testing",
"version": "2bccf2b55b92722cc8f6aa12b49af6da4557607b3ca9d3492a211cbd0697a15c",
"input": {
"apply_watermark": true,
"guidance_scale": 7.5,
"height": 1024,
"high_noise_frac": 0.8,
"image": "https://replicate.delivery/pbxt/KwLoUsaZVbACMqyxFdGkqhxUGUXbf4U5X25hAq2yYGhptBC6/mask.png",
"lora_scale": 0.6,
"negative_prompt": "",
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "a photo of TOK",
"prompt_strength": 0.8,
"refine": "no_refiner",
"scheduler": "K_EULER",
"width": 1024
},
"logs": "Using seed: 17714\nskipping loading .. weights already loaded\nPrompt: a photo of <s0><s1>\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:07, 4.93it/s]\n 5%|▌ | 2/40 [00:00<00:07, 4.91it/s]\n 8%|▊ | 3/40 [00:00<00:07, 4.91it/s]\n 10%|█ | 4/40 [00:00<00:07, 4.91it/s]\n 12%|█▎ | 5/40 [00:01<00:07, 4.90it/s]\n 15%|█▌ | 6/40 [00:01<00:06, 4.90it/s]\n 18%|█▊ | 7/40 [00:01<00:06, 4.89it/s]\n 20%|██ | 8/40 [00:01<00:06, 4.90it/s]\n 22%|██▎ | 9/40 [00:01<00:06, 4.89it/s]\n 25%|██▌ | 10/40 [00:02<00:06, 4.89it/s]\n 28%|██▊ | 11/40 [00:02<00:05, 4.89it/s]\n 30%|███ | 12/40 [00:02<00:05, 4.89it/s]\n 32%|███▎ | 13/40 [00:02<00:05, 4.89it/s]\n 35%|███▌ | 14/40 [00:02<00:05, 4.89it/s]\n 38%|███▊ | 15/40 [00:03<00:05, 4.89it/s]\n 40%|████ | 16/40 [00:03<00:04, 4.88it/s]\n 42%|████▎ | 17/40 [00:03<00:04, 4.88it/s]\n 45%|████▌ | 18/40 [00:03<00:04, 4.89it/s]\n 48%|████▊ | 19/40 [00:03<00:04, 4.89it/s]\n 50%|█████ | 20/40 [00:04<00:04, 4.89it/s]\n 52%|█████▎ | 21/40 [00:04<00:03, 4.89it/s]\n 55%|█████▌ | 22/40 [00:04<00:03, 4.88it/s]\n 57%|█████▊ | 23/40 [00:04<00:03, 4.88it/s]\n 60%|██████ | 24/40 [00:04<00:03, 4.88it/s]\n 62%|██████▎ | 25/40 [00:05<00:03, 4.88it/s]\n 65%|██████▌ | 26/40 [00:05<00:02, 4.88it/s]\n 68%|██████▊ | 27/40 [00:05<00:02, 4.87it/s]\n 70%|███████ | 28/40 [00:05<00:02, 4.88it/s]\n 72%|███████▎ | 29/40 [00:05<00:02, 4.88it/s]\n 75%|███████▌ | 30/40 [00:06<00:02, 4.88it/s]\n 78%|███████▊ | 31/40 [00:06<00:01, 4.86it/s]\n 80%|████████ | 32/40 [00:06<00:01, 4.84it/s]\n 82%|████████▎ | 33/40 [00:06<00:01, 4.85it/s]\n 85%|████████▌ | 34/40 [00:06<00:01, 4.86it/s]\n 88%|████████▊ | 35/40 [00:07<00:01, 4.87it/s]\n 90%|█████████ | 36/40 [00:07<00:00, 4.87it/s]\n 92%|█████████▎| 37/40 [00:07<00:00, 4.87it/s]\n 95%|█████████▌| 38/40 [00:07<00:00, 4.88it/s]\n 98%|█████████▊| 39/40 [00:07<00:00, 4.88it/s]\n100%|██████████| 40/40 [00:08<00:00, 4.88it/s]\n100%|██████████| 40/40 [00:08<00:00, 4.88it/s]",
"output": [
"https://replicate.delivery/pbxt/zT2QOy4BGvp2KVWGf0Z4YohNZC4nTFZDTOpuiGBd4w2BJyaJA/out-0.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2024-05-18T11:35:22.754Z",
"started_at": "2024-05-18T11:35:22.774176Z",
"completed_at": "2024-05-18T11:35:32.201807Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/r7pxe69fg9rgj0cfhdyag4mpx8/cancel",
"get": "https://api.replicate.com/v1/predictions/r7pxe69fg9rgj0cfhdyag4mpx8",
"web": "https://replicate.com/p/r7pxe69fg9rgj0cfhdyag4mpx8"
},
"metrics": {
"predict_time": 9.427631,
"total_time": 9.447807
}
}
