{
"prompt": "a road leading into mountains | red trees on side of the road"
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_OSX**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch:9093eef2cad6a0445f108067a38e1a17e22f8c8073d9f7d60d95cf354def4d29",
{
input: {
prompt: "a road leading into mountains | red trees on side of the road"
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_OSX**********************************
This is your API token. Keep it to yourself.
import replicate
Run cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch:9093eef2cad6a0445f108067a38e1a17e22f8c8073d9f7d60d95cf354def4d29",
input={
"prompt": "a road leading into mountains | red trees on side of the road"
}
)
# To access the file URL:
print(output.url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_OSX**********************************
This is your API token. Keep it to yourself.
Run cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch:9093eef2cad6a0445f108067a38e1a17e22f8c8073d9f7d60d95cf354def4d29",
"input": {
"prompt": "a road leading into mountains | red trees on side of the road"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"id": "t3sbrmwfu5hujkk74povqzvfqq",
"model": "cjwbw/compositional-vsual-generation-with-composable-diffusion-models-pytorch",
"version": "9093eef2cad6a0445f108067a38e1a17e22f8c8073d9f7d60d95cf354def4d29",
"input": {
"prompt": "a road leading into mountains | red trees on side of the road"
},
"logs": "\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:18, 5.45it/s]\n 2%|▏ | 2/100 [00:00<00:16, 5.82it/s]\n 3%|▎ | 3/100 [00:00<00:14, 6.47it/s]\n 4%|▍ | 4/100 [00:00<00:13, 7.04it/s]\n 5%|▌ | 5/100 [00:00<00:12, 7.46it/s]\n 6%|▌ | 6/100 [00:00<00:12, 7.80it/s]\n 7%|▋ | 7/100 [00:00<00:11, 8.09it/s]\n 8%|▊ | 8/100 [00:01<00:11, 8.26it/s]\n 9%|▉ | 9/100 [00:01<00:10, 8.43it/s]\n 10%|█ | 10/100 [00:01<00:10, 8.53it/s]\n 11%|█ | 11/100 [00:01<00:10, 8.62it/s]\n 12%|█▏ | 12/100 [00:01<00:10, 8.69it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 8.71it/s]\n 14%|█▍ | 14/100 [00:01<00:09, 8.77it/s]\n 15%|█▌ | 15/100 [00:01<00:09, 8.77it/s]\n 16%|█▌ | 16/100 [00:01<00:09, 8.78it/s]\n 17%|█▋ | 17/100 [00:02<00:09, 8.78it/s]\n 18%|█▊ | 18/100 [00:02<00:09, 8.76it/s]\n 19%|█▉ | 19/100 [00:02<00:09, 8.78it/s]\n 20%|██ | 20/100 [00:02<00:09, 8.78it/s]\n 21%|██ | 21/100 [00:02<00:09, 8.78it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 8.80it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 8.78it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 8.77it/s]\n 25%|██▌ | 25/100 [00:02<00:08, 8.80it/s]\n 26%|██▌ | 26/100 [00:03<00:08, 8.81it/s]\n 27%|██▋ | 27/100 [00:03<00:08, 8.84it/s]\n 28%|██▊ | 28/100 [00:03<00:08, 8.81it/s]\n 29%|██▉ | 29/100 [00:03<00:08, 8.84it/s]\n 30%|███ | 30/100 [00:03<00:07, 8.77it/s]\n 31%|███ | 31/100 [00:03<00:07, 8.76it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 8.78it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 8.77it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 8.76it/s]\n 35%|███▌ | 35/100 [00:04<00:07, 8.78it/s]\n 36%|███▌ | 36/100 [00:04<00:07, 8.77it/s]\n 37%|███▋ | 37/100 [00:04<00:07, 8.81it/s]\n 38%|███▊ | 38/100 [00:04<00:07, 8.79it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 8.81it/s]\n 40%|████ | 40/100 [00:04<00:06, 8.82it/s]\n 41%|████ | 41/100 [00:04<00:06, 8.80it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 8.84it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 8.79it/s]\n 44%|████▍ | 44/100 [00:05<00:06, 8.67it/s]\n 45%|████▌ | 45/100 [00:05<00:06, 8.68it/s]\n 46%|████▌ | 46/100 [00:05<00:06, 8.72it/s]\n 47%|████▋ | 47/100 [00:05<00:06, 8.71it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 8.76it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 8.77it/s]\n 50%|█████ | 50/100 [00:05<00:05, 8.80it/s]\n 51%|█████ | 51/100 [00:05<00:05, 8.80it/s]\n 52%|█████▏ | 52/100 [00:06<00:05, 8.72it/s]\n 53%|█████▎ | 53/100 [00:06<00:05, 8.75it/s]\n 54%|█████▍ | 54/100 [00:06<00:05, 8.79it/s]\n 55%|█████▌ | 55/100 [00:06<00:05, 8.76it/s]\n 56%|█████▌ | 56/100 [00:06<00:05, 8.78it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 8.78it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 8.78it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 8.81it/s]\n 60%|██████ | 60/100 [00:06<00:04, 8.79it/s]\n 61%|██████ | 61/100 [00:07<00:04, 8.79it/s]\n 62%|██████▏ | 62/100 [00:07<00:04, 8.78it/s]\n 63%|██████▎ | 63/100 [00:07<00:04, 8.78it/s]\n 64%|██████▍ | 64/100 [00:07<00:04, 8.80it/s]\n 65%|██████▌ | 65/100 [00:07<00:04, 8.74it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 8.75it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 8.73it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 8.73it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 8.77it/s]\n 70%|███████ | 70/100 [00:08<00:03, 8.76it/s]\n 71%|███████ | 71/100 [00:08<00:03, 8.74it/s]\n 72%|███████▏ | 72/100 [00:08<00:03, 8.75it/s]\n 73%|███████▎ | 73/100 [00:08<00:03, 8.75it/s]\n 74%|███████▍ | 74/100 [00:08<00:02, 8.72it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 8.74it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 8.73it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 8.72it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 8.73it/s]\n 79%|███████▉ | 79/100 [00:09<00:02, 8.70it/s]\n 80%|████████ | 80/100 [00:09<00:02, 8.73it/s]\n 81%|████████ | 81/100 [00:09<00:02, 8.75it/s]\n 82%|████████▏ | 82/100 [00:09<00:02, 8.78it/s]\n 83%|████████▎ | 83/100 [00:09<00:01, 8.80it/s]\n 84%|████████▍ | 84/100 [00:09<00:01, 8.77it/s]\n 85%|████████▌ | 85/100 [00:09<00:01, 8.74it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 8.75it/s]\n 87%|████████▋ | 87/100 [00:10<00:01, 8.72it/s]\n 88%|████████▊ | 88/100 [00:10<00:01, 8.72it/s]\n 89%|████████▉ | 89/100 [00:10<00:01, 8.75it/s]\n 90%|█████████ | 90/100 [00:10<00:01, 8.70it/s]\n 91%|█████████ | 91/100 [00:10<00:01, 8.70it/s]\n 92%|█████████▏| 92/100 [00:10<00:00, 8.73it/s]\n 93%|█████████▎| 93/100 [00:10<00:00, 8.70it/s]\n 94%|█████████▍| 94/100 [00:10<00:00, 8.70it/s]\n 95%|█████████▌| 95/100 [00:10<00:00, 8.71it/s]\n 96%|█████████▌| 96/100 [00:11<00:00, 8.69it/s]\n 97%|█████████▋| 97/100 [00:11<00:00, 8.67it/s]\n 98%|█████████▊| 98/100 [00:11<00:00, 8.69it/s]\n 99%|█████████▉| 99/100 [00:11<00:00, 8.67it/s]\n100%|██████████| 100/100 [00:11<00:00, 8.69it/s]\n100%|██████████| 100/100 [00:11<00:00, 8.68it/s]\n\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:04, 5.77it/s]\n 7%|▋ | 2/27 [00:00<00:04, 5.78it/s]\n 11%|█ | 3/27 [00:00<00:04, 5.79it/s]\n 15%|█▍ | 4/27 [00:00<00:03, 5.79it/s]\n 19%|█▊ | 5/27 [00:00<00:03, 5.80it/s]\n 22%|██▏ | 6/27 [00:01<00:03, 5.80it/s]\n 26%|██▌ | 7/27 [00:01<00:03, 5.81it/s]\n 30%|██▉ | 8/27 [00:01<00:03, 5.81it/s]\n 33%|███▎ | 9/27 [00:01<00:03, 5.81it/s]\n 37%|███▋ | 10/27 [00:01<00:02, 5.79it/s]\n 41%|████ | 11/27 [00:01<00:02, 5.82it/s]\n 44%|████▍ | 12/27 [00:02<00:02, 5.81it/s]\n 48%|████▊ | 13/27 [00:02<00:02, 5.80it/s]\n 52%|█████▏ | 14/27 [00:02<00:02, 5.80it/s]\n 56%|█████▌ | 15/27 [00:02<00:02, 5.80it/s]\n 59%|█████▉ | 16/27 [00:02<00:01, 5.80it/s]\n 63%|██████▎ | 17/27 [00:02<00:01, 5.80it/s]\n 67%|██████▋ | 18/27 [00:03<00:01, 5.78it/s]\n 70%|███████ | 19/27 [00:03<00:01, 5.80it/s]\n 74%|███████▍ | 20/27 [00:03<00:01, 5.81it/s]\n 78%|███████▊ | 21/27 [00:03<00:01, 5.85it/s]\n 81%|████████▏ | 22/27 [00:03<00:00, 5.85it/s]\n 85%|████████▌ | 23/27 [00:03<00:00, 5.83it/s]\n 89%|████████▉ | 24/27 [00:04<00:00, 5.82it/s]\n 93%|█████████▎| 25/27 [00:04<00:00, 5.80it/s]\n 96%|█████████▋| 26/27 [00:04<00:00, 5.80it/s]\n100%|██████████| 27/27 [00:04<00:00, 5.79it/s]\n100%|██████████| 27/27 [00:04<00:00, 5.81it/s]",
"output": "https://replicate.delivery/mgxm/c1e8102d-1b7a-4d47-add8-6df91795a98c/output.png",
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2022-08-04T18:06:31.917293Z",
"started_at": "2022-08-04T18:06:32.080264Z",
"completed_at": "2022-08-04T18:06:48.906321Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/t3sbrmwfu5hujkk74povqzvfqq/cancel",
"get": "https://api.replicate.com/v1/predictions/t3sbrmwfu5hujkk74povqzvfqq"
},
"metrics": {
"predict_time": 16.826057,
"total_time": 16.989028
}
}