Prediction
fofr/sd3-explorer:ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9Input
- seed
- 20
- model
- sd3_medium_incl_clips_t5xxlfp16.safetensors
- shift
- 3
- steps
- 32
- width
- 1024
- height
- 1024
- prompt
- a closeup photo of a man standing in a forest
- sampler
- dpmpp_2m
- scheduler
- sgm_uniform
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
- triple_prompt_t5
- use_triple_prompt
- triple_prompt_clip_g
- triple_prompt_clip_l
- negative_conditioning_end
- 0
- triple_prompt_empty_padding
{
"seed": 20,
"model": "sd3_medium_incl_clips_t5xxlfp16.safetensors",
"shift": 3,
"steps": 32,
"width": 1024,
"height": 1024,
"prompt": "a closeup photo of a man standing in a forest",
"sampler": "dpmpp_2m",
"scheduler": "sgm_uniform",
"output_format": "webp",
"guidance_scale": 4.5,
"output_quality": 80,
"negative_prompt": "",
"number_of_images": 1,
"triple_prompt_t5": "",
"use_triple_prompt": false,
"triple_prompt_clip_g": "",
"triple_prompt_clip_l": "",
"negative_conditioning_end": 0,
"triple_prompt_empty_padding": true
}
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sd3-explorer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sd3-explorer:ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9",
{
input: {
seed: 20,
model: "sd3_medium_incl_clips_t5xxlfp16.safetensors",
shift: 3,
steps: 32,
width: 1024,
height: 1024,
prompt: "a closeup photo of a man standing in a forest",
sampler: "dpmpp_2m",
scheduler: "sgm_uniform",
output_format: "webp",
guidance_scale: 4.5,
output_quality: 80,
negative_prompt: "",
number_of_images: 1,
triple_prompt_t5: "",
use_triple_prompt: false,
triple_prompt_clip_g: "",
triple_prompt_clip_l: "",
negative_conditioning_end: 0,
triple_prompt_empty_padding: true
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sd3-explorer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sd3-explorer:ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9",
input={
"seed": 20,
"model": "sd3_medium_incl_clips_t5xxlfp16.safetensors",
"shift": 3,
"steps": 32,
"width": 1024,
"height": 1024,
"prompt": "a closeup photo of a man standing in a forest",
"sampler": "dpmpp_2m",
"scheduler": "sgm_uniform",
"output_format": "webp",
"guidance_scale": 4.5,
"output_quality": 80,
"negative_prompt": "",
"number_of_images": 1,
"triple_prompt_t5": "",
"use_triple_prompt": False,
"triple_prompt_clip_g": "",
"triple_prompt_clip_l": "",
"negative_conditioning_end": 0,
"triple_prompt_empty_padding": True
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sd3-explorer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9",
"input": {
"seed": 20,
"model": "sd3_medium_incl_clips_t5xxlfp16.safetensors",
"shift": 3,
"steps": 32,
"width": 1024,
"height": 1024,
"prompt": "a closeup photo of a man standing in a forest",
"sampler": "dpmpp_2m",
"scheduler": "sgm_uniform",
"output_format": "webp",
"guidance_scale": 4.5,
"output_quality": 80,
"negative_prompt": "",
"number_of_images": 1,
"triple_prompt_t5": "",
"use_triple_prompt": false,
"triple_prompt_clip_g": "",
"triple_prompt_clip_l": "",
"negative_conditioning_end": 0,
"triple_prompt_empty_padding": true
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/sd3-explorer@sha256:ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9 \
-i 'seed=20' \
-i 'model="sd3_medium_incl_clips_t5xxlfp16.safetensors"' \
-i 'shift=3' \
-i 'steps=32' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a closeup photo of a man standing in a forest"' \
-i 'sampler="dpmpp_2m"' \
-i 'scheduler="sgm_uniform"' \
-i 'output_format="webp"' \
-i 'guidance_scale=4.5' \
-i 'output_quality=80' \
-i 'negative_prompt=""' \
-i 'number_of_images=1' \
-i 'triple_prompt_t5=""' \
-i 'use_triple_prompt=false' \
-i 'triple_prompt_clip_g=""' \
-i 'triple_prompt_clip_l=""' \
-i 'negative_conditioning_end=0' \
-i 'triple_prompt_empty_padding=true'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sd3-explorer@sha256:ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 20, "model": "sd3_medium_incl_clips_t5xxlfp16.safetensors", "shift": 3, "steps": 32, "width": 1024, "height": 1024, "prompt": "a closeup photo of a man standing in a forest", "sampler": "dpmpp_2m", "scheduler": "sgm_uniform", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "negative_prompt": "", "number_of_images": 1, "triple_prompt_t5": "", "use_triple_prompt": false, "triple_prompt_clip_g": "", "triple_prompt_clip_l": "", "negative_conditioning_end": 0, "triple_prompt_empty_padding": true } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{
"completed_at": "2024-06-18T12:41:52.961851Z",
"created_at": "2024-06-18T12:41:37.873000Z",
"data_removed": false,
"error": null,
"id": "vhbjm0qva5rgp0cg5devah6n34",
"input": {
"seed": 20,
"model": "sd3_medium_incl_clips_t5xxlfp16.safetensors",
"shift": 3,
"steps": 32,
"width": 1024,
"height": 1024,
"prompt": "a closeup photo of a man standing in a forest",
"sampler": "dpmpp_2m",
"scheduler": "sgm_uniform",
"output_format": "webp",
"guidance_scale": 4.5,
"output_quality": 80,
"negative_prompt": "",
"number_of_images": 1,
"triple_prompt_t5": "",
"use_triple_prompt": false,
"triple_prompt_clip_g": "",
"triple_prompt_clip_l": "",
"negative_conditioning_end": 0,
"triple_prompt_empty_padding": true
},
"logs": "Seed set to: 20\nChecking weights\n✅ sd3_medium_incl_clips_t5xxlfp16.safetensors exists in ComfyUI/models/checkpoints\n====================================\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 271, title: KSampler, class type: KSampler\n 0%| | 0/32 [00:00<?, ?it/s]\n 6%|▋ | 2/32 [00:00<00:07, 4.26it/s]\n 9%|▉ | 3/32 [00:00<00:06, 4.25it/s]\n 12%|█▎ | 4/32 [00:00<00:06, 4.23it/s]\n 16%|█▌ | 5/32 [00:01<00:06, 4.23it/s]\n 19%|█▉ | 6/32 [00:01<00:06, 4.22it/s]\n 22%|██▏ | 7/32 [00:01<00:05, 4.22it/s]\n 25%|██▌ | 8/32 [00:01<00:05, 4.21it/s]\n 28%|██▊ | 9/32 [00:02<00:05, 4.21it/s]\n 31%|███▏ | 10/32 [00:02<00:05, 4.20it/s]\n 34%|███▍ | 11/32 [00:02<00:04, 4.20it/s]\n 38%|███▊ | 12/32 [00:02<00:04, 4.20it/s]\n 41%|████ | 13/32 [00:03<00:04, 4.20it/s]\n 44%|████▍ | 14/32 [00:03<00:04, 4.21it/s]\n 47%|████▋ | 15/32 [00:03<00:04, 4.21it/s]\n 50%|█████ | 16/32 [00:03<00:03, 4.20it/s]\n 53%|█████▎ | 17/32 [00:04<00:03, 4.20it/s]\n 56%|█████▋ | 18/32 [00:04<00:03, 4.20it/s]\n 59%|█████▉ | 19/32 [00:04<00:03, 4.20it/s]\n 62%|██████▎ | 20/32 [00:04<00:02, 4.19it/s]\n 66%|██████▌ | 21/32 [00:04<00:02, 4.19it/s]\n 69%|██████▉ | 22/32 [00:05<00:02, 4.20it/s]\n 72%|███████▏ | 23/32 [00:05<00:02, 4.20it/s]\n 75%|███████▌ | 24/32 [00:05<00:01, 4.20it/s]\n 78%|███████▊ | 25/32 [00:05<00:01, 4.20it/s]\n 81%|████████▏ | 26/32 [00:06<00:01, 4.20it/s]\n 84%|████████▍ | 27/32 [00:06<00:01, 4.19it/s]\n 88%|████████▊ | 28/32 [00:06<00:00, 4.20it/s]\n 91%|█████████ | 29/32 [00:06<00:00, 4.20it/s]\n 94%|█████████▍| 30/32 [00:07<00:00, 4.19it/s]\n 97%|█████████▋| 31/32 [00:07<00:00, 4.20it/s]\n100%|██████████| 32/32 [00:07<00:00, 4.19it/s]\n100%|██████████| 32/32 [00:07<00:00, 4.20it/s]\nExecuting node 231, title: VAE Decode, class type: VAEDecode\nExecuting node 273, title: Save Image, class type: SaveImage\nPrompt executed in 8.26 seconds\noutputs: {'273': {'images': [{'filename': 'SD3_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nSD3_00001_.png",
"metrics": {
"predict_time": 8.785583497,
"total_time": 15.088851
},
"output": [
"https://replicate.delivery/pbxt/216yKDg001rTGNLIzZYUBw8yDeuRYQb5NEIbOTr523HIl5fSA/SD3_00001_.webp"
],
"started_at": "2024-06-18T12:41:44.176268Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/vhbjm0qva5rgp0cg5devah6n34",
"cancel": "https://api.replicate.com/v1/predictions/vhbjm0qva5rgp0cg5devah6n34/cancel"
},
"version": "ba3320806125ae93991c899010c998e4ee6a9dc6bdd89aeb6ecbd992815650a9"
}
Seed set to: 20
Checking weights
✅ sd3_medium_incl_clips_t5xxlfp16.safetensors exists in ComfyUI/models/checkpoints
====================================
Running workflow
got prompt
Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode
Executing node 271, title: KSampler, class type: KSampler
0%| | 0/32 [00:00<?, ?it/s]
6%|▋ | 2/32 [00:00<00:07, 4.26it/s]
9%|▉ | 3/32 [00:00<00:06, 4.25it/s]
12%|█▎ | 4/32 [00:00<00:06, 4.23it/s]
16%|█▌ | 5/32 [00:01<00:06, 4.23it/s]
19%|█▉ | 6/32 [00:01<00:06, 4.22it/s]
22%|██▏ | 7/32 [00:01<00:05, 4.22it/s]
25%|██▌ | 8/32 [00:01<00:05, 4.21it/s]
28%|██▊ | 9/32 [00:02<00:05, 4.21it/s]
31%|███▏ | 10/32 [00:02<00:05, 4.20it/s]
34%|███▍ | 11/32 [00:02<00:04, 4.20it/s]
38%|███▊ | 12/32 [00:02<00:04, 4.20it/s]
41%|████ | 13/32 [00:03<00:04, 4.20it/s]
44%|████▍ | 14/32 [00:03<00:04, 4.21it/s]
47%|████▋ | 15/32 [00:03<00:04, 4.21it/s]
50%|█████ | 16/32 [00:03<00:03, 4.20it/s]
53%|█████▎ | 17/32 [00:04<00:03, 4.20it/s]
56%|█████▋ | 18/32 [00:04<00:03, 4.20it/s]
59%|█████▉ | 19/32 [00:04<00:03, 4.20it/s]
62%|██████▎ | 20/32 [00:04<00:02, 4.19it/s]
66%|██████▌ | 21/32 [00:04<00:02, 4.19it/s]
69%|██████▉ | 22/32 [00:05<00:02, 4.20it/s]
72%|███████▏ | 23/32 [00:05<00:02, 4.20it/s]
75%|███████▌ | 24/32 [00:05<00:01, 4.20it/s]
78%|███████▊ | 25/32 [00:05<00:01, 4.20it/s]
81%|████████▏ | 26/32 [00:06<00:01, 4.20it/s]
84%|████████▍ | 27/32 [00:06<00:01, 4.19it/s]
88%|████████▊ | 28/32 [00:06<00:00, 4.20it/s]
91%|█████████ | 29/32 [00:06<00:00, 4.20it/s]
94%|█████████▍| 30/32 [00:07<00:00, 4.19it/s]
97%|█████████▋| 31/32 [00:07<00:00, 4.20it/s]
100%|██████████| 32/32 [00:07<00:00, 4.19it/s]
100%|██████████| 32/32 [00:07<00:00, 4.20it/s]
Executing node 231, title: VAE Decode, class type: VAEDecode
Executing node 273, title: Save Image, class type: SaveImage
Prompt executed in 8.26 seconds
outputs: {'273': {'images': [{'filename': 'SD3_00001_.png', 'subfolder': '', 'type': 'output'}]}}
====================================
SD3_00001_.png