stability-ai / stable-diffusion-inpainting

Fill in masked parts of images with Stable Diffusion

  • Public
  • 18.6M runs
  • GitHub
  • License

Run time and cost

This model costs approximately $0.0028 to run on Replicate, or 357 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 2 seconds.

Readme

This stable-diffusion-2-inpainting model is resumed from stable-diffusion-2-base (512-base-ema.ckpt) and trained for another 200k steps. Follows the mask-generation strategy presented in LAMA which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.

  • Developed by: Robin Rombach, Patrick Esser
  • Model type: Diffusion-based text-to-image generation model
  • Language(s): English
  • License: CreativeML Open RAIL++-M License
  • Model Description: This is a model that can be used to generate and modify images based on text prompts. It is a Latent Diffusion Model that uses a fixed, pretrained text encoder (OpenCLIP-ViT/H).
  • Resources for more information: GitHub Repository.

Intended use

See stability-ai/stable-diffusion for direct use, misuse, malicious use, out-of-scope use, limitations, and bias.

Training

Training Data

The model developers used the following dataset for training the model:

  • LAION-5B and subsets (details below). The training data is further filtered using LAION’s NSFW detector, with a “p_unsafe” score of 0.1 (conservative). For more details, please refer to LAION-5B’s NeurIPS 2022 paper and reviewer discussions on the topic.

Training Procedure

Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,

  • Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
  • Text prompts are encoded through the OpenCLIP-ViT/H text-encoder.
  • The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
  • The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called v-objective, see https://arxiv.org/abs/2202.00512.