zsxkib/flux-dev-inpainting-controlnet

FLUX.1-dev Inpainting ControlNet model

A "Hello World" model for me to get to grips with `cog` and Replicate

Transform your text into a beautiful two-tone color gradient that represents your emotions.

Age prediction using CLIP - Patched version of `https://replicate.com/andreasjansson/clip-age-predictor` that works with the new version of cog!

Logit Warping via Biases for Google's FLAN-T5-small

🐲 DragGAN 🐉 - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold"

📽️ Increase Framerate 🎬 ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation

🎨 AnimateDiff (w/ MotionLoRAs for Panning, Zooming, etc): Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning

✨DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

🎨AnimateDiff Prompt Travel🧭 Seamlessly Navigate and Animate Between Text-to-Image Prompts for Dynamic Visual Narratives

Monster Labs' Controlnet QR Code Monster v2 For SD-1.5 on top of AnimateDiff Prompt Travel (Motion Module SD 1.5 v2)

FILM: Frame Interpolation for Large Motion, In ECCV 2022.

Identifies NSFW images

Create song covers with any RVC v2 trained AI voice from audio files.

Create your own Realistic Voice Cloning (RVC v2) dataset using a YouTube link

Super High Quality Depth Maps 🗺️: An End-to-End Tile-Based Framework 🏗️ for High-Resolution Monocular Metric Depth Estimation 🔍📏

Unofficial Re-Trained AnimateAnyone (Image + DWPose Video → Animated Video of Image)

Make realistic images of real people instantly

🖼️ Super fast 1.5B Image Captioning/VQA Multimodal LLM (Image-to-Text) 🖋️

Real-Time Open-Vocabulary Object Detection

🗣️ TalkNet-ASD: Detect who is speaking in a video
Prediction
zsxkib/flux-dev-inpainting-controlnet:f9cb02cfd6b131af7ff9166b4bac5fdd2ed68bc282d2c049b95a23cea485e40dID4s0xrbym4drj60cj0rvbnbq0fcStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @zsxkibInput
- prompt
- a person wearing a white shoe, carrying a white bucket with text 'REPLICATE FLUX INPAINTING CONTROLNET' on it
- num_outputs
- 10
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 80
- negative_prompt
- num_inference_steps
- 28
- true_guidance_scale
- 3.5
- controlnet_conditioning_scale
- 0.9
{ "mask": "https://replicate.delivery/pbxt/Le6GAg8i6DrhZxvjibNmzKy4jPYEKIhH8DBZnUp2WAioguXI/bucket_mask.jpeg", "image": "https://replicate.delivery/pbxt/Le6GAdIHbCc7u5RAFQ09dqJoROHEayxjWQbg9Hx16aY2fa9L/bucket.png", "prompt": "a person wearing a white shoe, carrying a white bucket with text 'REPLICATE FLUX INPAINTING CONTROLNET' on it", "num_outputs": 10, "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "negative_prompt": "", "num_inference_steps": 28, "true_guidance_scale": 3.5, "controlnet_conditioning_scale": 0.9 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zsxkib/flux-dev-inpainting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zsxkib/flux-dev-inpainting-controlnet:f9cb02cfd6b131af7ff9166b4bac5fdd2ed68bc282d2c049b95a23cea485e40d", { input: { mask: "https://replicate.delivery/pbxt/Le6GAg8i6DrhZxvjibNmzKy4jPYEKIhH8DBZnUp2WAioguXI/bucket_mask.jpeg", image: "https://replicate.delivery/pbxt/Le6GAdIHbCc7u5RAFQ09dqJoROHEayxjWQbg9Hx16aY2fa9L/bucket.png", prompt: "a person wearing a white shoe, carrying a white bucket with text 'REPLICATE FLUX INPAINTING CONTROLNET' on it", num_outputs: 10, output_format: "png", guidance_scale: 3.5, output_quality: 80, negative_prompt: "", num_inference_steps: 28, true_guidance_scale: 3.5, controlnet_conditioning_scale: 0.9 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zsxkib/flux-dev-inpainting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zsxkib/flux-dev-inpainting-controlnet:f9cb02cfd6b131af7ff9166b4bac5fdd2ed68bc282d2c049b95a23cea485e40d", input={ "mask": "https://replicate.delivery/pbxt/Le6GAg8i6DrhZxvjibNmzKy4jPYEKIhH8DBZnUp2WAioguXI/bucket_mask.jpeg", "image": "https://replicate.delivery/pbxt/Le6GAdIHbCc7u5RAFQ09dqJoROHEayxjWQbg9Hx16aY2fa9L/bucket.png", "prompt": "a person wearing a white shoe, carrying a white bucket with text 'REPLICATE FLUX INPAINTING CONTROLNET' on it", "num_outputs": 10, "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "negative_prompt": "", "num_inference_steps": 28, "true_guidance_scale": 3.5, "controlnet_conditioning_scale": 0.9 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run zsxkib/flux-dev-inpainting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zsxkib/flux-dev-inpainting-controlnet:f9cb02cfd6b131af7ff9166b4bac5fdd2ed68bc282d2c049b95a23cea485e40d", "input": { "mask": "https://replicate.delivery/pbxt/Le6GAg8i6DrhZxvjibNmzKy4jPYEKIhH8DBZnUp2WAioguXI/bucket_mask.jpeg", "image": "https://replicate.delivery/pbxt/Le6GAdIHbCc7u5RAFQ09dqJoROHEayxjWQbg9Hx16aY2fa9L/bucket.png", "prompt": "a person wearing a white shoe, carrying a white bucket with text \'REPLICATE FLUX INPAINTING CONTROLNET\' on it", "num_outputs": 10, "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "negative_prompt": "", "num_inference_steps": 28, "true_guidance_scale": 3.5, "controlnet_conditioning_scale": 0.9 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-18T17:42:18.944281Z", "created_at": "2024-09-18T17:38:29.539000Z", "data_removed": false, "error": null, "id": "4s0xrbym4drj60cj0rvbnbq0fc", "input": { "mask": "https://replicate.delivery/pbxt/Le6GAg8i6DrhZxvjibNmzKy4jPYEKIhH8DBZnUp2WAioguXI/bucket_mask.jpeg", "image": "https://replicate.delivery/pbxt/Le6GAdIHbCc7u5RAFQ09dqJoROHEayxjWQbg9Hx16aY2fa9L/bucket.png", "prompt": "a person wearing a white shoe, carrying a white bucket with text 'REPLICATE FLUX INPAINTING CONTROLNET' on it", "num_outputs": 10, "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "negative_prompt": "", "num_inference_steps": 28, "true_guidance_scale": 3.5, "controlnet_conditioning_scale": 0.9 }, "logs": "Using seeds: [3765371973, 895665373, 4238102399, 1156424636, 866625007, 1217664626, 54085831, 2643616561, 334270782, 636282773]\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:06<02:46, 6.16s/it]\n 7%|▋ | 2/28 [00:10<02:05, 4.82s/it]\n 11%|█ | 3/28 [00:16<02:15, 5.43s/it]\n 14%|█▍ | 4/28 [00:22<02:17, 5.72s/it]\n 18%|█▊ | 5/28 [00:28<02:15, 5.88s/it]\n 21%|██▏ | 6/28 [00:34<02:11, 5.98s/it]\n 25%|██▌ | 7/28 [00:40<02:06, 6.04s/it]\n 29%|██▊ | 8/28 [00:47<02:01, 6.09s/it]\n 32%|███▏ | 9/28 [00:53<01:56, 6.12s/it]\n 36%|███▌ | 10/28 [00:59<01:50, 6.14s/it]\n 39%|███▉ | 11/28 [01:05<01:44, 6.16s/it]\n 43%|████▎ | 12/28 [01:11<01:38, 6.17s/it]\n 46%|████▋ | 13/28 [01:18<01:32, 6.18s/it]\n 50%|█████ | 14/28 [01:24<01:26, 6.19s/it]\n 54%|█████▎ | 15/28 [01:30<01:20, 6.19s/it]\n 57%|█████▋ | 16/28 [01:36<01:14, 6.19s/it]\n 61%|██████ | 17/28 [01:42<01:08, 6.19s/it]\n 64%|██████▍ | 18/28 [01:49<01:01, 6.20s/it]\n 68%|██████▊ | 19/28 [01:55<00:55, 6.20s/it]\n 71%|███████▏ | 20/28 [02:01<00:49, 6.20s/it]\n 75%|███████▌ | 21/28 [02:07<00:43, 6.20s/it]\n 79%|███████▊ | 22/28 [02:13<00:37, 6.20s/it]\n 82%|████████▏ | 23/28 [02:20<00:30, 6.20s/it]\n 86%|████████▌ | 24/28 [02:26<00:24, 6.20s/it]\n 89%|████████▉ | 25/28 [02:32<00:18, 6.20s/it]\n 93%|█████████▎| 26/28 [02:38<00:12, 6.20s/it]\n 96%|█████████▋| 27/28 [02:44<00:06, 6.20s/it]\n100%|██████████| 28/28 [02:51<00:00, 6.20s/it]\n100%|██████████| 28/28 [02:51<00:00, 6.11s/it]\n[~] Saving to /tmp/output_0.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_1.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_2.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_3.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_4.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_5.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_6.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_7.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_8.png...\n[~] Output format: PNG\n[~] Saving to /tmp/output_9.png...\n[~] Output format: PNG", "metrics": { "predict_time": 181.000114541, "total_time": 229.405281 }, "output": [ "https://replicate.delivery/yhqm/BXeAEBzlV3yYTafsvvs81z4AvR2HNEBPD215wfgVvduwXY8mA/output_0.png", "https://replicate.delivery/yhqm/Wezid0X143yEZCgffBeRvxQKU5A2pzjOsLXaP0GWEfAMfCj3E/output_1.png", "https://replicate.delivery/yhqm/fNFqwbcUm7Q9LihinfCXnmWTe3fpog5Lz96fxMC5TxiLfCj3E/output_2.png", "https://replicate.delivery/yhqm/VXLSVz1bH74CK1qSd1v990NsiftTloQIKSAq8E0fnv95LMemA/output_3.png", "https://replicate.delivery/yhqm/35mLtvj6NfRPWaqDwzqXyw2Igb67Uyy6e5Cu9g2Qc4W5LMemA/output_4.png", "https://replicate.delivery/yhqm/DVAykB6LlxYcN9rqguMpCzIWEm5IKjhNkQLTvaKDJJYeFGvJA/output_5.png", "https://replicate.delivery/yhqm/uYTn7Y2WeB28JSNqnHN0LNY7f6Eu1aX6cIt9MElnFci6LMemA/output_6.png", "https://replicate.delivery/yhqm/HnUYUvmBsqaSEtjnaiHznUrfPJf99RaT5ltOStuXv536LMemA/output_7.png", "https://replicate.delivery/yhqm/mxp5JGUGR8qbCVD7rhbfwZjGdjrmnpic8RzDJvXQ3zE9FGvJA/output_8.png", "https://replicate.delivery/yhqm/hKt4gNptAJ65FtbBk3bSR70Q3Jeeo2ybKzxc0wB44JP6LMemA/output_9.png" ], "started_at": "2024-09-18T17:39:17.944166Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4s0xrbym4drj60cj0rvbnbq0fc", "cancel": "https://api.replicate.com/v1/predictions/4s0xrbym4drj60cj0rvbnbq0fc/cancel" }, "version": "f9cb02cfd6b131af7ff9166b4bac5fdd2ed68bc282d2c049b95a23cea485e40d" }
Generated inUsing seeds: [3765371973, 895665373, 4238102399, 1156424636, 866625007, 1217664626, 54085831, 2643616561, 334270782, 636282773] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:06<02:46, 6.16s/it] 7%|▋ | 2/28 [00:10<02:05, 4.82s/it] 11%|█ | 3/28 [00:16<02:15, 5.43s/it] 14%|█▍ | 4/28 [00:22<02:17, 5.72s/it] 18%|█▊ | 5/28 [00:28<02:15, 5.88s/it] 21%|██▏ | 6/28 [00:34<02:11, 5.98s/it] 25%|██▌ | 7/28 [00:40<02:06, 6.04s/it] 29%|██▊ | 8/28 [00:47<02:01, 6.09s/it] 32%|███▏ | 9/28 [00:53<01:56, 6.12s/it] 36%|███▌ | 10/28 [00:59<01:50, 6.14s/it] 39%|███▉ | 11/28 [01:05<01:44, 6.16s/it] 43%|████▎ | 12/28 [01:11<01:38, 6.17s/it] 46%|████▋ | 13/28 [01:18<01:32, 6.18s/it] 50%|█████ | 14/28 [01:24<01:26, 6.19s/it] 54%|█████▎ | 15/28 [01:30<01:20, 6.19s/it] 57%|█████▋ | 16/28 [01:36<01:14, 6.19s/it] 61%|██████ | 17/28 [01:42<01:08, 6.19s/it] 64%|██████▍ | 18/28 [01:49<01:01, 6.20s/it] 68%|██████▊ | 19/28 [01:55<00:55, 6.20s/it] 71%|███████▏ | 20/28 [02:01<00:49, 6.20s/it] 75%|███████▌ | 21/28 [02:07<00:43, 6.20s/it] 79%|███████▊ | 22/28 [02:13<00:37, 6.20s/it] 82%|████████▏ | 23/28 [02:20<00:30, 6.20s/it] 86%|████████▌ | 24/28 [02:26<00:24, 6.20s/it] 89%|████████▉ | 25/28 [02:32<00:18, 6.20s/it] 93%|█████████▎| 26/28 [02:38<00:12, 6.20s/it] 96%|█████████▋| 27/28 [02:44<00:06, 6.20s/it] 100%|██████████| 28/28 [02:51<00:00, 6.20s/it] 100%|██████████| 28/28 [02:51<00:00, 6.11s/it] [~] Saving to /tmp/output_0.png... [~] Output format: PNG [~] Saving to /tmp/output_1.png... [~] Output format: PNG [~] Saving to /tmp/output_2.png... [~] Output format: PNG [~] Saving to /tmp/output_3.png... [~] Output format: PNG [~] Saving to /tmp/output_4.png... [~] Output format: PNG [~] Saving to /tmp/output_5.png... [~] Output format: PNG [~] Saving to /tmp/output_6.png... [~] Output format: PNG [~] Saving to /tmp/output_7.png... [~] Output format: PNG [~] Saving to /tmp/output_8.png... [~] Output format: PNG [~] Saving to /tmp/output_9.png... [~] Output format: PNG
Want to make some of these yourself?
Run this model