defaulta vision of paradise. unreal engine
typetext
{
"guidance_scale": 7.5,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "π¨βππ¦
, digital Art, Greg rutkowski, Trending artstation,cinematographic",
"scheduler": "DPMSolverMultistep"
}npm install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PcU**********************************
This is your API token. Keep it to yourself.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run daanelson/stable-diffusion-speed-lab using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"daanelson/stable-diffusion-speed-lab:05aca4aea54103353540845627a4ac45412195df3b099f9f4d932f58a5ccb820",
{
input: {
guidance_scale: 7.5,
num_inference_steps: 50,
num_outputs: 1,
prompt: "π¨βππ¦
, digital Art, Greg rutkowski, Trending artstation,cinematographic",
scheduler: "DPMSolverMultistep"
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PcU**********************************
This is your API token. Keep it to yourself.
import replicate
Run daanelson/stable-diffusion-speed-lab using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"daanelson/stable-diffusion-speed-lab:05aca4aea54103353540845627a4ac45412195df3b099f9f4d932f58a5ccb820",
input={
"guidance_scale": 7.5,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "π¨βππ¦
, digital Art, Greg rutkowski, Trending artstation,cinematographic",
"scheduler": "DPMSolverMultistep"
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=r8_PcU**********************************
This is your API token. Keep it to yourself.
Run daanelson/stable-diffusion-speed-lab using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "daanelson/stable-diffusion-speed-lab:05aca4aea54103353540845627a4ac45412195df3b099f9f4d932f58a5ccb820",
"input": {
"guidance_scale": 7.5,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "π¨βππ¦
, digital Art, Greg rutkowski, Trending artstation,cinematographic",
"scheduler": "DPMSolverMultistep"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
{
"id": "dk6eqsktbnajzcbdwwy4vydqra",
"model": "daanelson/stable-diffusion-speed-lab",
"version": "05aca4aea54103353540845627a4ac45412195df3b099f9f4d932f58a5ccb820",
"input": {
"guidance_scale": 7.5,
"num_inference_steps": 50,
"num_outputs": 1,
"prompt": "π¨βππ¦
, digital Art, Greg rutkowski, Trending artstation,cinematographic",
"scheduler": "DPMSolverMultistep"
},
"logs": "Using seed: 11744\n 0%| | 0/50 [00:00<?, ?it/s]\n 10%|β | 5/50 [00:00<00:01, 41.67it/s]\n 22%|βββ | 11/50 [00:00<00:00, 47.58it/s]\n 34%|ββββ | 17/50 [00:00<00:00, 49.75it/s]\n 46%|βββββ | 23/50 [00:00<00:00, 50.80it/s]\n 58%|ββββββ | 29/50 [00:00<00:00, 51.38it/s]\n 70%|βββββββ | 35/50 [00:00<00:00, 51.74it/s]\n 82%|βββββββββ | 41/50 [00:00<00:00, 51.97it/s]\n 94%|ββββββββββ| 47/50 [00:00<00:00, 52.08it/s]\n100%|ββββββββββ| 50/50 [00:00<00:00, 51.02it/s]",
"output": [
"https://replicate.delivery/pbxt/OUCfLnZeb4ipLkABAvT05DFlIYzVuYXwmQWntyKfoXrNkH5gA/out-0.png"
],
"data_removed": false,
"error": null,
"source": "web",
"status": "succeeded",
"created_at": "2023-02-09T05:54:12.733829Z",
"started_at": "2023-02-09T05:54:12.810167Z",
"completed_at": "2023-02-09T05:54:14.652334Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/dk6eqsktbnajzcbdwwy4vydqra/cancel",
"get": "https://api.replicate.com/v1/predictions/dk6eqsktbnajzcbdwwy4vydqra"
},
"metrics": {
"predict_time": 1.842167,
"total_time": 1.918505
}
}