Prediction
lucataco/flux-dev-lora:091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3Input
- prompt
- a portrait photo of QSO dog
- hf_lora
- https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar
- lora_scale
- 0.8
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- prompt_strength
- 0.8
- num_inference_steps
- 28
- disable_safety_checker
{
"prompt": "a portrait photo of QSO dog",
"hf_lora": "https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar",
"lora_scale": 0.8,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"num_inference_steps": 28,
"disable_safety_checker": false
}
Install Replicate’s Node.js client library:
npm install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/flux-dev-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/flux-dev-lora:091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3",
{
input: {
prompt: "a portrait photo of QSO dog",
hf_lora: "https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar",
lora_scale: 0.8,
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:
pip install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:
import replicate
Run lucataco/flux-dev-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/flux-dev-lora:091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3",
input={
"prompt": "a portrait photo of QSO dog",
"hf_lora": "https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar",
"lora_scale": 0.8,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/flux-dev-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lucataco/flux-dev-lora:091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3",
"input": {
"prompt": "a portrait photo of QSO dog",
"hf_lora": "https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar",
"lora_scale": 0.8,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{
"completed_at": "2024-10-14T20:00:45.253159Z",
"created_at": "2024-10-14T20:00:27.974000Z",
"data_removed": false,
"error": null,
"id": "saeq22178srm20cjhjf9rh2bkm",
"input": {
"prompt": "a portrait photo of QSO dog",
"hf_lora": "https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar",
"lora_scale": 0.8,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"num_inference_steps": 28,
"disable_safety_checker": false
},
"logs": "Using seed: 64705\nPrompt: a portrait photo of QSO dog\ntxt2img mode\nDownloading LoRA weights from - Replicate URL: https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar\nLoading LoRA took: 0.24 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.79it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.37it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.12it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.01it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.95it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.91it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.89it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.88it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.87it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.86it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.85it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.85it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.85it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.84it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.85it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.84it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.84it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.85it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.85it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.85it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.85it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.85it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.87it/s]",
"metrics": {
"predict_time": 7.811824669,
"total_time": 17.279159
},
"output": [
"https://replicate.delivery/yhqm/zchuiJgO8Cafd6ew8jRmQirbyZNGMafAgXcRBAtWp0TbTlNnA/out-0.webp"
],
"started_at": "2024-10-14T20:00:37.441335Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/saeq22178srm20cjhjf9rh2bkm",
"cancel": "https://api.replicate.com/v1/predictions/saeq22178srm20cjhjf9rh2bkm/cancel"
},
"version": "091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3"
}
Generated in
Using seed: 64705
Prompt: a portrait photo of QSO dog
txt2img mode
Downloading LoRA weights from - Replicate URL: https://replicate.delivery/yhqm/U6nfWVy9OUR5AKsZbPEewUeMks2cR4gJaUj4WiSIPmSQXjNnA/trained_model.tar
Loading LoRA took: 0.24 seconds
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.79it/s]
7%|▋ | 2/28 [00:00<00:05, 4.37it/s]
11%|█ | 3/28 [00:00<00:06, 4.12it/s]
14%|█▍ | 4/28 [00:00<00:05, 4.01it/s]
18%|█▊ | 5/28 [00:01<00:05, 3.95it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.91it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.89it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.88it/s]
32%|███▏ | 9/28 [00:02<00:04, 3.87it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.86it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.85it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.85it/s]
46%|████▋ | 13/28 [00:03<00:03, 3.85it/s]
50%|█████ | 14/28 [00:03<00:03, 3.84it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s]
61%|██████ | 17/28 [00:04<00:02, 3.85it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]
68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.84it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.84it/s]
82%|████████▏ | 23/28 [00:05<00:01, 3.85it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.85it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.85it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.85it/s]
96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]
100%|██████████| 28/28 [00:07<00:00, 3.85it/s]
100%|██████████| 28/28 [00:07<00:00, 3.87it/s]