Input image
The width to resize the image to before running inference.
Default: 1024
The number of points to be sampled along one side of the image. The total number of points is points_per_side**2. If None, point_grids must provide explicit point sampling.
Default: 32
A filtering threshold in [0,1], using the model's predicted mask quality.
Default: 0.88
A filtering threshold in [0,1], using the stability of the mask under changes to the cutoff used to binarize the model's mask predictions.
Default: 0.95
The amount to shift the cutoff when calculated the stability score.
Default: 1
The box IoU cutoff used by non-maximal suppression to filter duplicate masks.
Default: 0.7
If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where each layer has 2**i_layer number of image crops
Default: 0
The box IoU cutoff used by non-maximal suppression to filter duplicate masks between different crops.
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the image length. Later layers with more crops scale down this overlap.
Default: 0.3413333333333333
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
If >0, postprocessing will be applied to remove disconnected regions and holes in masks with area smaller than min_mask_region_area.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run poemsforaphrodite/seg using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "poemsforaphrodite/seg:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45", { input: { image: "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", resize_width: 1024, crop_n_layers: 0, box_nms_thresh: 0.7, crop_nms_thresh: 0.7, points_per_side: 32, pred_iou_thresh: 0.88, crop_overlap_ratio: 0.3413333333333333, min_mask_region_area: 0, stability_score_offset: 1, stability_score_thresh: 0.95, crop_n_points_downscale_factor: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
import replicate
output = replicate.run( "poemsforaphrodite/seg:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45", input={ "image": "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", "resize_width": 1024, "crop_n_layers": 0, "box_nms_thresh": 0.7, "crop_nms_thresh": 0.7, "points_per_side": 32, "pred_iou_thresh": 0.88, "crop_overlap_ratio": 0.3413333333333333, "min_mask_region_area": 0, "stability_score_offset": 1, "stability_score_thresh": 0.95, "crop_n_points_downscale_factor": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "poemsforaphrodite/seg:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45", "input": { "image": "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", "resize_width": 1024, "crop_n_layers": 0, "box_nms_thresh": 0.7, "crop_nms_thresh": 0.7, "points_per_side": 32, "pred_iou_thresh": 0.88, "crop_overlap_ratio": 0.3413333333333333, "min_mask_region_area": 0, "stability_score_offset": 1, "stability_score_thresh": 0.95, "crop_n_points_downscale_factor": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/poemsforaphrodite/seg@sha256:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45 \ -i 'image="https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg"' \ -i 'resize_width=1024' \ -i 'crop_n_layers=0' \ -i 'box_nms_thresh=0.7' \ -i 'crop_nms_thresh=0.7' \ -i 'points_per_side=32' \ -i 'pred_iou_thresh=0.88' \ -i 'crop_overlap_ratio=0.3413333333333333' \ -i 'min_mask_region_area=0' \ -i 'stability_score_offset=1' \ -i 'stability_score_thresh=0.95' \ -i 'crop_n_points_downscale_factor=1'
To learn more, take a look at the Cog documentation.
docker run -d -p 5000:5000 --gpus=all r8.im/poemsforaphrodite/seg@sha256:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45 curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", "resize_width": 1024, "crop_n_layers": 0, "box_nms_thresh": 0.7, "crop_nms_thresh": 0.7, "points_per_side": 32, "pred_iou_thresh": 0.88, "crop_overlap_ratio": 0.3413333333333333, "min_mask_region_area": 0, "stability_score_offset": 1, "stability_score_thresh": 0.95, "crop_n_points_downscale_factor": 1 } }' \ http://localhost:5000/predictions
docker run -d -p 5000:5000 --gpus=all r8.im/poemsforaphrodite/seg@sha256:9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", "resize_width": 1024, "crop_n_layers": 0, "box_nms_thresh": 0.7, "crop_nms_thresh": 0.7, "points_per_side": 32, "pred_iou_thresh": 0.88, "crop_overlap_ratio": 0.3413333333333333, "min_mask_region_area": 0, "stability_score_offset": 1, "stability_score_thresh": 0.95, "crop_n_points_downscale_factor": 1 } }' \ http://localhost:5000/predictions
{ "completed_at": "2024-07-04T15:06:20.034438Z", "created_at": "2024-07-04T15:02:29.139000Z", "data_removed": false, "error": null, "id": "ckpp2cng2drgc0cgfs28h3mejc", "input": { "image": "https://replicate.delivery/pbxt/LD5JwJL44XFvZ95n4k036TfCZtMH2Z63HVkhQFRAVi7AxVCO/image.jpg", "resize_width": 1024, "crop_n_layers": 0, "box_nms_thresh": 0.7, "crop_nms_thresh": 0.7, "points_per_side": 32, "pred_iou_thresh": 0.88, "crop_overlap_ratio": 0.3413333333333333, "min_mask_region_area": 0, "stability_score_offset": 1, "stability_score_thresh": 0.95, "crop_n_points_downscale_factor": 1 }, "logs": null, "metrics": { "predict_time": 10.873067847, "total_time": 230.895438 }, "output": "https://replicate.delivery/czjl/5PhkhdY2QIpOOBJhzR3olKR9L0GU6HNyQkRXaNyY4M3asRxE/output_mask.png", "started_at": "2024-07-04T15:06:09.161370Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ckpp2cng2drgc0cgfs28h3mejc", "cancel": "https://api.replicate.com/v1/predictions/ckpp2cng2drgc0cgfs28h3mejc/cancel" }, "version": "9076a804eb8800986357e8d5f1c835d39966b6c613a3dd71dd3aec5063359a45" }
View more examples
This model runs on Nvidia T4 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input