stability-ai
/
sdxl
A text-to-image generative AI model that creates beautiful images
Prediction
stability-ai/sdxl:7762fd07IDzuv3yw3bis3kvmypxkefqlowmeStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A studio photo of a rainbow coloured cat
- refine
- expert_ensemble_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A studio photo of a rainbow coloured cat", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { width: 1024, height: 1024, prompt: "A studio photo of a rainbow coloured cat", refine: "expert_ensemble_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "width": 1024, "height": 1024, "prompt": "A studio photo of a rainbow coloured cat", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "width": 1024, "height": 1024, "prompt": "A studio photo of a rainbow coloured cat", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A studio photo of a rainbow coloured cat"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A studio photo of a rainbow coloured cat", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T19:57:37.126174Z", "created_at": "2023-07-26T19:57:26.269769Z", "data_removed": false, "error": null, "id": "zuv3yw3bis3kvmypxkefqlowme", "input": { "width": 1024, "height": 1024, "prompt": "A studio photo of a rainbow coloured cat", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 48373\ntxt2img mode\n 0%| | 0/31 [00:00<?, ?it/s]\n 3%|▎ | 1/31 [00:00<00:06, 4.98it/s]\n 6%|▋ | 2/31 [00:00<00:05, 4.95it/s]\n 10%|▉ | 3/31 [00:00<00:05, 4.93it/s]\n 13%|█▎ | 4/31 [00:00<00:05, 4.92it/s]\n 16%|█▌ | 5/31 [00:01<00:05, 4.90it/s]\n 19%|█▉ | 6/31 [00:01<00:05, 4.90it/s]\n 23%|██▎ | 7/31 [00:01<00:04, 4.90it/s]\n 26%|██▌ | 8/31 [00:01<00:04, 4.89it/s]\n 29%|██▉ | 9/31 [00:01<00:04, 4.89it/s]\n 32%|███▏ | 10/31 [00:02<00:04, 4.90it/s]\n 35%|███▌ | 11/31 [00:02<00:04, 4.89it/s]\n 39%|███▊ | 12/31 [00:02<00:03, 4.89it/s]\n 42%|████▏ | 13/31 [00:02<00:03, 4.89it/s]\n 45%|████▌ | 14/31 [00:02<00:03, 4.89it/s]\n 48%|████▊ | 15/31 [00:03<00:03, 4.89it/s]\n 52%|█████▏ | 16/31 [00:03<00:03, 4.90it/s]\n 55%|█████▍ | 17/31 [00:03<00:02, 4.89it/s]\n 58%|█████▊ | 18/31 [00:03<00:02, 4.89it/s]\n 61%|██████▏ | 19/31 [00:03<00:02, 4.89it/s]\n 65%|██████▍ | 20/31 [00:04<00:02, 4.89it/s]\n 68%|██████▊ | 21/31 [00:04<00:02, 4.89it/s]\n 71%|███████ | 22/31 [00:04<00:01, 4.89it/s]\n 74%|███████▍ | 23/31 [00:04<00:01, 4.89it/s]\n 77%|███████▋ | 24/31 [00:04<00:01, 4.89it/s]\n 81%|████████ | 25/31 [00:05<00:01, 4.89it/s]\n 84%|████████▍ | 26/31 [00:05<00:01, 4.88it/s]\n 87%|████████▋ | 27/31 [00:05<00:00, 4.88it/s]\n 90%|█████████ | 28/31 [00:05<00:00, 4.89it/s]\n 94%|█████████▎| 29/31 [00:05<00:00, 4.89it/s]\n 97%|█████████▋| 30/31 [00:06<00:00, 4.89it/s]\n100%|██████████| 31/31 [00:06<00:00, 4.90it/s]\n100%|██████████| 31/31 [00:06<00:00, 4.90it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.34it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.31it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.31it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.30it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.30it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.30it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.30it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.29it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.30it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.29it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.30it/s]", "metrics": { "predict_time": 10.8524, "total_time": 10.856405 }, "output": [ "https://replicate.delivery/pbxt/V1IpaG4oVXofGyZcPxhhVVfEFvaMx9lMzqR9Fh4RpsRwyyTRA/out-0.png" ], "started_at": "2023-07-26T19:57:26.273774Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zuv3yw3bis3kvmypxkefqlowme", "cancel": "https://api.replicate.com/v1/predictions/zuv3yw3bis3kvmypxkefqlowme/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 48373 txt2img mode 0%| | 0/31 [00:00<?, ?it/s] 3%|▎ | 1/31 [00:00<00:06, 4.98it/s] 6%|▋ | 2/31 [00:00<00:05, 4.95it/s] 10%|▉ | 3/31 [00:00<00:05, 4.93it/s] 13%|█▎ | 4/31 [00:00<00:05, 4.92it/s] 16%|█▌ | 5/31 [00:01<00:05, 4.90it/s] 19%|█▉ | 6/31 [00:01<00:05, 4.90it/s] 23%|██▎ | 7/31 [00:01<00:04, 4.90it/s] 26%|██▌ | 8/31 [00:01<00:04, 4.89it/s] 29%|██▉ | 9/31 [00:01<00:04, 4.89it/s] 32%|███▏ | 10/31 [00:02<00:04, 4.90it/s] 35%|███▌ | 11/31 [00:02<00:04, 4.89it/s] 39%|███▊ | 12/31 [00:02<00:03, 4.89it/s] 42%|████▏ | 13/31 [00:02<00:03, 4.89it/s] 45%|████▌ | 14/31 [00:02<00:03, 4.89it/s] 48%|████▊ | 15/31 [00:03<00:03, 4.89it/s] 52%|█████▏ | 16/31 [00:03<00:03, 4.90it/s] 55%|█████▍ | 17/31 [00:03<00:02, 4.89it/s] 58%|█████▊ | 18/31 [00:03<00:02, 4.89it/s] 61%|██████▏ | 19/31 [00:03<00:02, 4.89it/s] 65%|██████▍ | 20/31 [00:04<00:02, 4.89it/s] 68%|██████▊ | 21/31 [00:04<00:02, 4.89it/s] 71%|███████ | 22/31 [00:04<00:01, 4.89it/s] 74%|███████▍ | 23/31 [00:04<00:01, 4.89it/s] 77%|███████▋ | 24/31 [00:04<00:01, 4.89it/s] 81%|████████ | 25/31 [00:05<00:01, 4.89it/s] 84%|████████▍ | 26/31 [00:05<00:01, 4.88it/s] 87%|████████▋ | 27/31 [00:05<00:00, 4.88it/s] 90%|█████████ | 28/31 [00:05<00:00, 4.89it/s] 94%|█████████▎| 29/31 [00:05<00:00, 4.89it/s] 97%|█████████▋| 30/31 [00:06<00:00, 4.89it/s] 100%|██████████| 31/31 [00:06<00:00, 4.90it/s] 100%|██████████| 31/31 [00:06<00:00, 4.90it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.34it/s] 20%|██ | 2/10 [00:00<00:01, 4.31it/s] 30%|███ | 3/10 [00:00<00:01, 4.31it/s] 40%|████ | 4/10 [00:00<00:01, 4.30it/s] 50%|█████ | 5/10 [00:01<00:01, 4.30it/s] 60%|██████ | 6/10 [00:01<00:00, 4.30it/s] 70%|███████ | 7/10 [00:01<00:00, 4.30it/s] 80%|████████ | 8/10 [00:01<00:00, 4.29it/s] 90%|█████████ | 9/10 [00:02<00:00, 4.30it/s] 100%|██████████| 10/10 [00:02<00:00, 4.29it/s] 100%|██████████| 10/10 [00:02<00:00, 4.30it/s]
Prediction
stability-ai/sdxl:7762fd07IDfaz67o3bvxmrr5ydw7yhustwfqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An orange cat sitting on a bench
- refine
- base_image_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "mask": "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", "image": "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", "width": 1024, "height": 1024, "prompt": "An orange cat sitting on a bench", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { mask: "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", image: "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", width: 1024, height: 1024, prompt: "An orange cat sitting on a bench", refine: "base_image_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "mask": "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", "image": "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", "width": 1024, "height": 1024, "prompt": "An orange cat sitting on a bench", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "mask": "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", "image": "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", "width": 1024, "height": 1024, "prompt": "An orange cat sitting on a bench", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'mask="https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png"' \ -i 'image="https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="An orange cat sitting on a bench"' \ -i 'refine="base_image_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=25'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", "image": "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", "width": 1024, "height": 1024, "prompt": "An orange cat sitting on a bench", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T19:59:46.932300Z", "created_at": "2023-07-26T19:59:13.479776Z", "data_removed": false, "error": null, "id": "faz67o3bvxmrr5ydw7yhustwfq", "input": { "mask": "https://replicate.delivery/pbxt/JF3Ld3yPLVA3JIELHx1uaAV5CQOyr4AoiOfo6mJZn2fofGaT/dog-mask.png", "image": "https://replicate.delivery/pbxt/JF3LddQgRiMM9Q4Smyfw7q7BR9Gn0PwkSWvJjKDPxyvr8Ru0/cool-dog.png", "width": 1024, "height": 1024, "prompt": "An orange cat sitting on a bench", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 47363\ninpainting mode\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:04, 4.62it/s]\n 10%|█ | 2/20 [00:00<00:03, 4.84it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 4.91it/s]\n 20%|██ | 4/20 [00:00<00:03, 4.94it/s]\n 25%|██▌ | 5/20 [00:01<00:03, 4.95it/s]\n 30%|███ | 6/20 [00:01<00:02, 4.96it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 4.96it/s]\n 40%|████ | 8/20 [00:01<00:02, 4.96it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 4.97it/s]\n 50%|█████ | 10/20 [00:02<00:02, 4.98it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 4.98it/s]\n 60%|██████ | 12/20 [00:02<00:01, 4.98it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 4.98it/s]\n 70%|███████ | 14/20 [00:02<00:01, 4.98it/s]\n 75%|███████▌ | 15/20 [00:03<00:01, 4.97it/s]\n 80%|████████ | 16/20 [00:03<00:00, 4.97it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 4.97it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 4.96it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 4.96it/s]\n100%|██████████| 20/20 [00:04<00:00, 4.96it/s]\n100%|██████████| 20/20 [00:04<00:00, 4.95it/s]\n 0%| | 0/7 [00:00<?, ?it/s]\n 14%|█▍ | 1/7 [00:00<00:01, 4.25it/s]\n 29%|██▊ | 2/7 [00:00<00:01, 4.30it/s]\n 43%|████▎ | 3/7 [00:00<00:00, 4.31it/s]\n 57%|█████▋ | 4/7 [00:00<00:00, 4.32it/s]\n 71%|███████▏ | 5/7 [00:01<00:00, 4.33it/s]\n 86%|████████▌ | 6/7 [00:01<00:00, 4.33it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.33it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.32it/s]", "metrics": { "predict_time": 10.301413, "total_time": 33.452524 }, "output": [ "https://replicate.delivery/pbxt/p6Pt5qCuQGYGDxzAbB3goyeFguncwZ8EPj8Ncl7JPhCZa5pIA/out-0.png" ], "started_at": "2023-07-26T19:59:36.630887Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/faz67o3bvxmrr5ydw7yhustwfq", "cancel": "https://api.replicate.com/v1/predictions/faz67o3bvxmrr5ydw7yhustwfq/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 47363 inpainting mode 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:04, 4.62it/s] 10%|█ | 2/20 [00:00<00:03, 4.84it/s] 15%|█▌ | 3/20 [00:00<00:03, 4.91it/s] 20%|██ | 4/20 [00:00<00:03, 4.94it/s] 25%|██▌ | 5/20 [00:01<00:03, 4.95it/s] 30%|███ | 6/20 [00:01<00:02, 4.96it/s] 35%|███▌ | 7/20 [00:01<00:02, 4.96it/s] 40%|████ | 8/20 [00:01<00:02, 4.96it/s] 45%|████▌ | 9/20 [00:01<00:02, 4.97it/s] 50%|█████ | 10/20 [00:02<00:02, 4.98it/s] 55%|█████▌ | 11/20 [00:02<00:01, 4.98it/s] 60%|██████ | 12/20 [00:02<00:01, 4.98it/s] 65%|██████▌ | 13/20 [00:02<00:01, 4.98it/s] 70%|███████ | 14/20 [00:02<00:01, 4.98it/s] 75%|███████▌ | 15/20 [00:03<00:01, 4.97it/s] 80%|████████ | 16/20 [00:03<00:00, 4.97it/s] 85%|████████▌ | 17/20 [00:03<00:00, 4.97it/s] 90%|█████████ | 18/20 [00:03<00:00, 4.96it/s] 95%|█████████▌| 19/20 [00:03<00:00, 4.96it/s] 100%|██████████| 20/20 [00:04<00:00, 4.96it/s] 100%|██████████| 20/20 [00:04<00:00, 4.95it/s] 0%| | 0/7 [00:00<?, ?it/s] 14%|█▍ | 1/7 [00:00<00:01, 4.25it/s] 29%|██▊ | 2/7 [00:00<00:01, 4.30it/s] 43%|████▎ | 3/7 [00:00<00:00, 4.31it/s] 57%|█████▋ | 4/7 [00:00<00:00, 4.32it/s] 71%|███████▏ | 5/7 [00:01<00:00, 4.33it/s] 86%|████████▌ | 6/7 [00:01<00:00, 4.33it/s] 100%|██████████| 7/7 [00:01<00:00, 4.33it/s] 100%|██████████| 7/7 [00:01<00:00, 4.32it/s]
Prediction
stability-ai/sdxl:7762fd07ID54q24ulbyhpgb3gmbs2yryboa4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1344
- height
- 768
- prompt
- A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful
- refine
- expert_ensemble_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- negative_prompt
- soft, blurry, ugly
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1344, "height": 768, "prompt": "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { width: 1344, height: 768, prompt: "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", refine: "expert_ensemble_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, negative_prompt: "soft, blurry, ugly", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "width": 1344, "height": 768, "prompt": "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "width": 1344, "height": 768, "prompt": "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'width=1344' \ -i 'height=768' \ -i 'prompt="A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="soft, blurry, ugly"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1344, "height": 768, "prompt": "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T20:04:41.674898Z", "created_at": "2023-07-26T20:04:30.299979Z", "data_removed": false, "error": null, "id": "54q24ulbyhpgb3gmbs2yryboa4", "input": { "width": 1344, "height": 768, "prompt": "A film still of a robot, sci-fi, cool color grading, 70mm, bokeh, cinematic, anamorphic, beautiful", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 48161\ntxt2img mode\n 0%| | 0/31 [00:00<?, ?it/s]\n 3%|▎ | 1/31 [00:00<00:23, 1.26it/s]\n 6%|▋ | 2/31 [00:00<00:12, 2.27it/s]\n 10%|▉ | 3/31 [00:01<00:09, 3.03it/s]\n 13%|█▎ | 4/31 [00:01<00:07, 3.60it/s]\n 16%|█▌ | 5/31 [00:01<00:06, 4.01it/s]\n 19%|█▉ | 6/31 [00:01<00:05, 4.30it/s]\n 23%|██▎ | 7/31 [00:01<00:05, 4.52it/s]\n 26%|██▌ | 8/31 [00:02<00:04, 4.68it/s]\n 29%|██▉ | 9/31 [00:02<00:04, 4.79it/s]\n 32%|███▏ | 10/31 [00:02<00:04, 4.86it/s]\n 35%|███▌ | 11/31 [00:02<00:04, 4.91it/s]\n 39%|███▊ | 12/31 [00:02<00:03, 4.95it/s]\n 42%|████▏ | 13/31 [00:03<00:03, 4.98it/s]\n 45%|████▌ | 14/31 [00:03<00:03, 5.00it/s]\n 48%|████▊ | 15/31 [00:03<00:03, 5.01it/s]\n 52%|█████▏ | 16/31 [00:03<00:02, 5.02it/s]\n 55%|█████▍ | 17/31 [00:03<00:02, 5.02it/s]\n 58%|█████▊ | 18/31 [00:04<00:02, 5.03it/s]\n 61%|██████▏ | 19/31 [00:04<00:02, 5.04it/s]\n 65%|██████▍ | 20/31 [00:04<00:02, 5.05it/s]\n 68%|██████▊ | 21/31 [00:04<00:01, 5.05it/s]\n 71%|███████ | 22/31 [00:04<00:01, 5.06it/s]\n 74%|███████▍ | 23/31 [00:05<00:01, 5.06it/s]\n 77%|███████▋ | 24/31 [00:05<00:01, 5.06it/s]\n 81%|████████ | 25/31 [00:05<00:01, 5.07it/s]\n 84%|████████▍ | 26/31 [00:05<00:00, 5.06it/s]\n 87%|████████▋ | 27/31 [00:05<00:00, 5.06it/s]\n 90%|█████████ | 28/31 [00:06<00:00, 5.06it/s]\n 94%|█████████▎| 29/31 [00:06<00:00, 5.06it/s]\n 97%|█████████▋| 30/31 [00:06<00:00, 5.06it/s]\n100%|██████████| 31/31 [00:06<00:00, 5.06it/s]\n100%|██████████| 31/31 [00:06<00:00, 4.61it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.30it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.37it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.38it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.39it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.39it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.40it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.40it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.40it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.40it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.40it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.39it/s]", "metrics": { "predict_time": 11.358785, "total_time": 11.374919 }, "output": [ "https://replicate.delivery/pbxt/mBv308Qw3DafE6vOg7a2eNPTDkZMRwRZ5XdDGZzGkdnZ5yTRA/out-0.png" ], "started_at": "2023-07-26T20:04:30.316113Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/54q24ulbyhpgb3gmbs2yryboa4", "cancel": "https://api.replicate.com/v1/predictions/54q24ulbyhpgb3gmbs2yryboa4/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 48161 txt2img mode 0%| | 0/31 [00:00<?, ?it/s] 3%|▎ | 1/31 [00:00<00:23, 1.26it/s] 6%|▋ | 2/31 [00:00<00:12, 2.27it/s] 10%|▉ | 3/31 [00:01<00:09, 3.03it/s] 13%|█▎ | 4/31 [00:01<00:07, 3.60it/s] 16%|█▌ | 5/31 [00:01<00:06, 4.01it/s] 19%|█▉ | 6/31 [00:01<00:05, 4.30it/s] 23%|██▎ | 7/31 [00:01<00:05, 4.52it/s] 26%|██▌ | 8/31 [00:02<00:04, 4.68it/s] 29%|██▉ | 9/31 [00:02<00:04, 4.79it/s] 32%|███▏ | 10/31 [00:02<00:04, 4.86it/s] 35%|███▌ | 11/31 [00:02<00:04, 4.91it/s] 39%|███▊ | 12/31 [00:02<00:03, 4.95it/s] 42%|████▏ | 13/31 [00:03<00:03, 4.98it/s] 45%|████▌ | 14/31 [00:03<00:03, 5.00it/s] 48%|████▊ | 15/31 [00:03<00:03, 5.01it/s] 52%|█████▏ | 16/31 [00:03<00:02, 5.02it/s] 55%|█████▍ | 17/31 [00:03<00:02, 5.02it/s] 58%|█████▊ | 18/31 [00:04<00:02, 5.03it/s] 61%|██████▏ | 19/31 [00:04<00:02, 5.04it/s] 65%|██████▍ | 20/31 [00:04<00:02, 5.05it/s] 68%|██████▊ | 21/31 [00:04<00:01, 5.05it/s] 71%|███████ | 22/31 [00:04<00:01, 5.06it/s] 74%|███████▍ | 23/31 [00:05<00:01, 5.06it/s] 77%|███████▋ | 24/31 [00:05<00:01, 5.06it/s] 81%|████████ | 25/31 [00:05<00:01, 5.07it/s] 84%|████████▍ | 26/31 [00:05<00:00, 5.06it/s] 87%|████████▋ | 27/31 [00:05<00:00, 5.06it/s] 90%|█████████ | 28/31 [00:06<00:00, 5.06it/s] 94%|█████████▎| 29/31 [00:06<00:00, 5.06it/s] 97%|█████████▋| 30/31 [00:06<00:00, 5.06it/s] 100%|██████████| 31/31 [00:06<00:00, 5.06it/s] 100%|██████████| 31/31 [00:06<00:00, 4.61it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.30it/s] 20%|██ | 2/10 [00:00<00:01, 4.37it/s] 30%|███ | 3/10 [00:00<00:01, 4.38it/s] 40%|████ | 4/10 [00:00<00:01, 4.39it/s] 50%|█████ | 5/10 [00:01<00:01, 4.39it/s] 60%|██████ | 6/10 [00:01<00:00, 4.40it/s] 70%|███████ | 7/10 [00:01<00:00, 4.40it/s] 80%|████████ | 8/10 [00:01<00:00, 4.40it/s] 90%|█████████ | 9/10 [00:02<00:00, 4.40it/s] 100%|██████████| 10/10 [00:02<00:00, 4.40it/s] 100%|██████████| 10/10 [00:02<00:00, 4.39it/s]
Prediction
stability-ai/sdxl:7762fd07IDwv7kgx3bgsguc3cnltku6me4pyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- Alien invasion
- refine
- base_image_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.9
- num_inference_steps
- 30
{ "mask": "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", "image": "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", "width": 1024, "height": 1024, "prompt": "Alien invasion", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.9, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { mask: "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", image: "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", width: 1024, height: 1024, prompt: "Alien invasion", refine: "base_image_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.9, num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "mask": "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", "image": "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", "width": 1024, "height": 1024, "prompt": "Alien invasion", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.9, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "mask": "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", "image": "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", "width": 1024, "height": 1024, "prompt": "Alien invasion", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.9, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'mask="https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png"' \ -i 'image="https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Alien invasion"' \ -i 'refine="base_image_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.9' \ -i 'num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", "image": "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", "width": 1024, "height": 1024, "prompt": "Alien invasion", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.9, "num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T20:07:34.580706Z", "created_at": "2023-07-26T20:07:24.863629Z", "data_removed": false, "error": null, "id": "wv7kgx3bgsguc3cnltku6me4py", "input": { "mask": "https://replicate.delivery/pbxt/JF3OMU8P5Kpxi4EmDqDKEH1fxE5qGOZThplanZAXnzJzzVja/nyc-mask.png", "image": "https://replicate.delivery/pbxt/JF3OMzdRCDSp9ZL2bxRDb6YZWryrT0OxfTB60W4y5PFA6MYi/nyc.png", "width": 1024, "height": 1024, "prompt": "Alien invasion", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.9, "num_inference_steps": 30 }, "logs": "Using seed: 20832\ninpainting mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:05, 5.01it/s]\n 7%|▋ | 2/27 [00:00<00:04, 5.00it/s]\n 11%|█ | 3/27 [00:00<00:04, 5.00it/s]\n 15%|█▍ | 4/27 [00:00<00:04, 5.00it/s]\n 19%|█▊ | 5/27 [00:01<00:04, 4.99it/s]\n 22%|██▏ | 6/27 [00:01<00:04, 4.99it/s]\n 26%|██▌ | 7/27 [00:01<00:04, 4.99it/s]\n 30%|██▉ | 8/27 [00:01<00:03, 4.99it/s]\n 33%|███▎ | 9/27 [00:01<00:03, 4.99it/s]\n 37%|███▋ | 10/27 [00:02<00:03, 4.99it/s]\n 41%|████ | 11/27 [00:02<00:03, 4.99it/s]\n 44%|████▍ | 12/27 [00:02<00:03, 4.98it/s]\n 48%|████▊ | 13/27 [00:02<00:02, 4.98it/s]\n 52%|█████▏ | 14/27 [00:02<00:02, 4.97it/s]\n 56%|█████▌ | 15/27 [00:03<00:02, 4.97it/s]\n 59%|█████▉ | 16/27 [00:03<00:02, 4.96it/s]\n 63%|██████▎ | 17/27 [00:03<00:02, 4.95it/s]\n 67%|██████▋ | 18/27 [00:03<00:01, 4.95it/s]\n 70%|███████ | 19/27 [00:03<00:01, 4.96it/s]\n 74%|███████▍ | 20/27 [00:04<00:01, 4.96it/s]\n 78%|███████▊ | 21/27 [00:04<00:01, 4.96it/s]\n 81%|████████▏ | 22/27 [00:04<00:01, 4.96it/s]\n 85%|████████▌ | 23/27 [00:04<00:00, 4.95it/s]\n 89%|████████▉ | 24/27 [00:04<00:00, 4.96it/s]\n 93%|█████████▎| 25/27 [00:05<00:00, 4.96it/s]\n 96%|█████████▋| 26/27 [00:05<00:00, 4.96it/s]\n100%|██████████| 27/27 [00:05<00:00, 4.95it/s]\n100%|██████████| 27/27 [00:05<00:00, 4.97it/s]\n 0%| | 0/9 [00:00<?, ?it/s]\n 11%|█ | 1/9 [00:00<00:01, 4.36it/s]\n 22%|██▏ | 2/9 [00:00<00:01, 4.34it/s]\n 33%|███▎ | 3/9 [00:00<00:01, 4.33it/s]\n 44%|████▍ | 4/9 [00:00<00:01, 4.33it/s]\n 56%|█████▌ | 5/9 [00:01<00:00, 4.33it/s]\n 67%|██████▋ | 6/9 [00:01<00:00, 4.32it/s]\n 78%|███████▊ | 7/9 [00:01<00:00, 4.33it/s]\n 89%|████████▉ | 8/9 [00:01<00:00, 4.32it/s]\n100%|██████████| 9/9 [00:02<00:00, 4.32it/s]\n100%|██████████| 9/9 [00:02<00:00, 4.33it/s]", "metrics": { "predict_time": 9.733889, "total_time": 9.717077 }, "output": [ "https://replicate.delivery/pbxt/cA9288tEJXbcJNBA6OU3gDJ9LWWCFCfDllhoefA8h2VN4lniA/out-0.png" ], "started_at": "2023-07-26T20:07:24.846817Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/wv7kgx3bgsguc3cnltku6me4py", "cancel": "https://api.replicate.com/v1/predictions/wv7kgx3bgsguc3cnltku6me4py/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 20832 inpainting mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:05, 5.01it/s] 7%|▋ | 2/27 [00:00<00:04, 5.00it/s] 11%|█ | 3/27 [00:00<00:04, 5.00it/s] 15%|█▍ | 4/27 [00:00<00:04, 5.00it/s] 19%|█▊ | 5/27 [00:01<00:04, 4.99it/s] 22%|██▏ | 6/27 [00:01<00:04, 4.99it/s] 26%|██▌ | 7/27 [00:01<00:04, 4.99it/s] 30%|██▉ | 8/27 [00:01<00:03, 4.99it/s] 33%|███▎ | 9/27 [00:01<00:03, 4.99it/s] 37%|███▋ | 10/27 [00:02<00:03, 4.99it/s] 41%|████ | 11/27 [00:02<00:03, 4.99it/s] 44%|████▍ | 12/27 [00:02<00:03, 4.98it/s] 48%|████▊ | 13/27 [00:02<00:02, 4.98it/s] 52%|█████▏ | 14/27 [00:02<00:02, 4.97it/s] 56%|█████▌ | 15/27 [00:03<00:02, 4.97it/s] 59%|█████▉ | 16/27 [00:03<00:02, 4.96it/s] 63%|██████▎ | 17/27 [00:03<00:02, 4.95it/s] 67%|██████▋ | 18/27 [00:03<00:01, 4.95it/s] 70%|███████ | 19/27 [00:03<00:01, 4.96it/s] 74%|███████▍ | 20/27 [00:04<00:01, 4.96it/s] 78%|███████▊ | 21/27 [00:04<00:01, 4.96it/s] 81%|████████▏ | 22/27 [00:04<00:01, 4.96it/s] 85%|████████▌ | 23/27 [00:04<00:00, 4.95it/s] 89%|████████▉ | 24/27 [00:04<00:00, 4.96it/s] 93%|█████████▎| 25/27 [00:05<00:00, 4.96it/s] 96%|█████████▋| 26/27 [00:05<00:00, 4.96it/s] 100%|██████████| 27/27 [00:05<00:00, 4.95it/s] 100%|██████████| 27/27 [00:05<00:00, 4.97it/s] 0%| | 0/9 [00:00<?, ?it/s] 11%|█ | 1/9 [00:00<00:01, 4.36it/s] 22%|██▏ | 2/9 [00:00<00:01, 4.34it/s] 33%|███▎ | 3/9 [00:00<00:01, 4.33it/s] 44%|████▍ | 4/9 [00:00<00:01, 4.33it/s] 56%|█████▌ | 5/9 [00:01<00:00, 4.33it/s] 67%|██████▋ | 6/9 [00:01<00:00, 4.32it/s] 78%|███████▊ | 7/9 [00:01<00:00, 4.33it/s] 89%|████████▉ | 8/9 [00:01<00:00, 4.32it/s] 100%|██████████| 9/9 [00:02<00:00, 4.32it/s] 100%|██████████| 9/9 [00:02<00:00, 4.33it/s]
Prediction
stability-ai/sdxl:7762fd07IDks4e2jdb6zef4xodz3mz5utuu4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A rainbow coloured tiger
- refine
- expert_ensemble_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.65
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured tiger", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.65, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { image: "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", width: 1024, height: 1024, prompt: "A rainbow coloured tiger", refine: "expert_ensemble_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.65, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured tiger", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.65, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured tiger", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.65, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'image="https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A rainbow coloured tiger"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.65' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured tiger", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.65, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T20:20:38.861038Z", "created_at": "2023-07-26T20:20:31.036768Z", "data_removed": false, "error": null, "id": "ks4e2jdb6zef4xodz3mz5utuu4", "input": { "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured tiger", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.65, "num_inference_steps": 50 }, "logs": "Using seed: 47500\nimg2img mode\n 0%| | 0/13 [00:00<?, ?it/s]\n 8%|▊ | 1/13 [00:00<00:02, 4.99it/s]\n 15%|█▌ | 2/13 [00:00<00:02, 4.98it/s]\n 23%|██▎ | 3/13 [00:00<00:02, 4.98it/s]\n 31%|███ | 4/13 [00:00<00:01, 4.98it/s]\n 38%|███▊ | 5/13 [00:01<00:01, 4.97it/s]\n 46%|████▌ | 6/13 [00:01<00:01, 4.96it/s]\n 54%|█████▍ | 7/13 [00:01<00:01, 4.97it/s]\n 62%|██████▏ | 8/13 [00:01<00:01, 4.97it/s]\n 69%|██████▉ | 9/13 [00:01<00:00, 4.97it/s]\n 77%|███████▋ | 10/13 [00:02<00:00, 4.96it/s]\n 85%|████████▍ | 11/13 [00:02<00:00, 4.96it/s]\n 92%|█████████▏| 12/13 [00:02<00:00, 4.96it/s]\n100%|██████████| 13/13 [00:02<00:00, 4.95it/s]\n100%|██████████| 13/13 [00:02<00:00, 4.97it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.24it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.29it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.31it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.31it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.32it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.32it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.32it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.32it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.32it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.32it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.31it/s]", "metrics": { "predict_time": 7.829192, "total_time": 7.82427 }, "output": [ "https://replicate.delivery/pbxt/YhL0f6v0tfhmlEjce0iA2jFLW5vuKDbUh69FYNjnfQEXhMPFB/out-0.png" ], "started_at": "2023-07-26T20:20:31.031846Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ks4e2jdb6zef4xodz3mz5utuu4", "cancel": "https://api.replicate.com/v1/predictions/ks4e2jdb6zef4xodz3mz5utuu4/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 47500 img2img mode 0%| | 0/13 [00:00<?, ?it/s] 8%|▊ | 1/13 [00:00<00:02, 4.99it/s] 15%|█▌ | 2/13 [00:00<00:02, 4.98it/s] 23%|██▎ | 3/13 [00:00<00:02, 4.98it/s] 31%|███ | 4/13 [00:00<00:01, 4.98it/s] 38%|███▊ | 5/13 [00:01<00:01, 4.97it/s] 46%|████▌ | 6/13 [00:01<00:01, 4.96it/s] 54%|█████▍ | 7/13 [00:01<00:01, 4.97it/s] 62%|██████▏ | 8/13 [00:01<00:01, 4.97it/s] 69%|██████▉ | 9/13 [00:01<00:00, 4.97it/s] 77%|███████▋ | 10/13 [00:02<00:00, 4.96it/s] 85%|████████▍ | 11/13 [00:02<00:00, 4.96it/s] 92%|█████████▏| 12/13 [00:02<00:00, 4.96it/s] 100%|██████████| 13/13 [00:02<00:00, 4.95it/s] 100%|██████████| 13/13 [00:02<00:00, 4.97it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.24it/s] 20%|██ | 2/10 [00:00<00:01, 4.29it/s] 30%|███ | 3/10 [00:00<00:01, 4.31it/s] 40%|████ | 4/10 [00:00<00:01, 4.31it/s] 50%|█████ | 5/10 [00:01<00:01, 4.32it/s] 60%|██████ | 6/10 [00:01<00:00, 4.32it/s] 70%|███████ | 7/10 [00:01<00:00, 4.32it/s] 80%|████████ | 8/10 [00:01<00:00, 4.32it/s] 90%|█████████ | 9/10 [00:02<00:00, 4.32it/s] 100%|██████████| 10/10 [00:02<00:00, 4.32it/s] 100%|██████████| 10/10 [00:02<00:00, 4.31it/s]
Prediction
stability-ai/sdxl:7762fd07IDlrmn5btbq2o5xpbksl56fw4y64StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1248
- height
- 832
- prompt
- A beautiful landscape photo
- refine
- expert_ensemble_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- negative_prompt
- soft, blurry, ugly
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1248, "height": 832, "prompt": "A beautiful landscape photo", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { width: 1248, height: 832, prompt: "A beautiful landscape photo", refine: "expert_ensemble_refiner", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, negative_prompt: "soft, blurry, ugly", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "width": 1248, "height": 832, "prompt": "A beautiful landscape photo", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "width": 1248, "height": 832, "prompt": "A beautiful landscape photo", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'width=1248' \ -i 'height=832' \ -i 'prompt="A beautiful landscape photo"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="soft, blurry, ugly"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1248, "height": 832, "prompt": "A beautiful landscape photo", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T20:01:03.053313Z", "created_at": "2023-07-26T20:00:52.342022Z", "data_removed": false, "error": null, "id": "lrmn5btbq2o5xpbksl56fw4y64", "input": { "width": 1248, "height": 832, "prompt": "A beautiful landscape photo", "refine": "expert_ensemble_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "soft, blurry, ugly", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 58684\ntxt2img mode\n 0%| | 0/31 [00:00<?, ?it/s]\n 3%|▎ | 1/31 [00:00<00:06, 4.80it/s]\n 6%|▋ | 2/31 [00:00<00:05, 4.89it/s]\n 10%|▉ | 3/31 [00:00<00:05, 4.92it/s]\n 13%|█▎ | 4/31 [00:00<00:05, 4.94it/s]\n 16%|█▌ | 5/31 [00:01<00:05, 4.95it/s]\n 19%|█▉ | 6/31 [00:01<00:05, 4.95it/s]\n 23%|██▎ | 7/31 [00:01<00:04, 4.97it/s]\n 26%|██▌ | 8/31 [00:01<00:04, 4.97it/s]\n 29%|██▉ | 9/31 [00:01<00:04, 4.98it/s]\n 32%|███▏ | 10/31 [00:02<00:04, 4.98it/s]\n 35%|███▌ | 11/31 [00:02<00:04, 4.97it/s]\n 39%|███▊ | 12/31 [00:02<00:03, 4.98it/s]\n 42%|████▏ | 13/31 [00:02<00:03, 4.98it/s]\n 45%|████▌ | 14/31 [00:02<00:03, 4.99it/s]\n 48%|████▊ | 15/31 [00:03<00:03, 4.98it/s]\n 52%|█████▏ | 16/31 [00:03<00:03, 4.98it/s]\n 55%|█████▍ | 17/31 [00:03<00:02, 4.98it/s]\n 58%|█████▊ | 18/31 [00:03<00:02, 4.98it/s]\n 61%|██████▏ | 19/31 [00:03<00:02, 4.98it/s]\n 65%|██████▍ | 20/31 [00:04<00:02, 4.97it/s]\n 68%|██████▊ | 21/31 [00:04<00:02, 4.98it/s]\n 71%|███████ | 22/31 [00:04<00:01, 4.97it/s]\n 74%|███████▍ | 23/31 [00:04<00:01, 4.97it/s]\n 77%|███████▋ | 24/31 [00:04<00:01, 4.97it/s]\n 81%|████████ | 25/31 [00:05<00:01, 4.97it/s]\n 84%|████████▍ | 26/31 [00:05<00:01, 4.97it/s]\n 87%|████████▋ | 27/31 [00:05<00:00, 4.97it/s]\n 90%|█████████ | 28/31 [00:05<00:00, 4.97it/s]\n 94%|█████████▎| 29/31 [00:05<00:00, 4.97it/s]\n 97%|█████████▋| 30/31 [00:06<00:00, 4.97it/s]\n100%|██████████| 31/31 [00:06<00:00, 4.97it/s]\n100%|██████████| 31/31 [00:06<00:00, 4.97it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.15it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.21it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.23it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.24it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.24it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.24it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.24it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.24it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.24it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.24it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.24it/s]", "metrics": { "predict_time": 10.725354, "total_time": 10.711291 }, "output": [ "https://replicate.delivery/pbxt/zIPS4uyGONKvKBg9iTA6FRC785eK7eWhpewpR7W0RnF9rlniA/out-0.png" ], "started_at": "2023-07-26T20:00:52.327959Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lrmn5btbq2o5xpbksl56fw4y64", "cancel": "https://api.replicate.com/v1/predictions/lrmn5btbq2o5xpbksl56fw4y64/cancel" }, "version": "610dddf033f10431b1b55f24510b6009fcba23017ee551a1b9afbc4eec79e29c" }
Generated inUsing seed: 58684 txt2img mode 0%| | 0/31 [00:00<?, ?it/s] 3%|▎ | 1/31 [00:00<00:06, 4.80it/s] 6%|▋ | 2/31 [00:00<00:05, 4.89it/s] 10%|▉ | 3/31 [00:00<00:05, 4.92it/s] 13%|█▎ | 4/31 [00:00<00:05, 4.94it/s] 16%|█▌ | 5/31 [00:01<00:05, 4.95it/s] 19%|█▉ | 6/31 [00:01<00:05, 4.95it/s] 23%|██▎ | 7/31 [00:01<00:04, 4.97it/s] 26%|██▌ | 8/31 [00:01<00:04, 4.97it/s] 29%|██▉ | 9/31 [00:01<00:04, 4.98it/s] 32%|███▏ | 10/31 [00:02<00:04, 4.98it/s] 35%|███▌ | 11/31 [00:02<00:04, 4.97it/s] 39%|███▊ | 12/31 [00:02<00:03, 4.98it/s] 42%|████▏ | 13/31 [00:02<00:03, 4.98it/s] 45%|████▌ | 14/31 [00:02<00:03, 4.99it/s] 48%|████▊ | 15/31 [00:03<00:03, 4.98it/s] 52%|█████▏ | 16/31 [00:03<00:03, 4.98it/s] 55%|█████▍ | 17/31 [00:03<00:02, 4.98it/s] 58%|█████▊ | 18/31 [00:03<00:02, 4.98it/s] 61%|██████▏ | 19/31 [00:03<00:02, 4.98it/s] 65%|██████▍ | 20/31 [00:04<00:02, 4.97it/s] 68%|██████▊ | 21/31 [00:04<00:02, 4.98it/s] 71%|███████ | 22/31 [00:04<00:01, 4.97it/s] 74%|███████▍ | 23/31 [00:04<00:01, 4.97it/s] 77%|███████▋ | 24/31 [00:04<00:01, 4.97it/s] 81%|████████ | 25/31 [00:05<00:01, 4.97it/s] 84%|████████▍ | 26/31 [00:05<00:01, 4.97it/s] 87%|████████▋ | 27/31 [00:05<00:00, 4.97it/s] 90%|█████████ | 28/31 [00:05<00:00, 4.97it/s] 94%|█████████▎| 29/31 [00:05<00:00, 4.97it/s] 97%|█████████▋| 30/31 [00:06<00:00, 4.97it/s] 100%|██████████| 31/31 [00:06<00:00, 4.97it/s] 100%|██████████| 31/31 [00:06<00:00, 4.97it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.15it/s] 20%|██ | 2/10 [00:00<00:01, 4.21it/s] 30%|███ | 3/10 [00:00<00:01, 4.23it/s] 40%|████ | 4/10 [00:00<00:01, 4.24it/s] 50%|█████ | 5/10 [00:01<00:01, 4.24it/s] 60%|██████ | 6/10 [00:01<00:00, 4.24it/s] 70%|███████ | 7/10 [00:01<00:00, 4.24it/s] 80%|████████ | 8/10 [00:01<00:00, 4.24it/s] 90%|█████████ | 9/10 [00:02<00:00, 4.24it/s] 100%|██████████| 10/10 [00:02<00:00, 4.24it/s] 100%|██████████| 10/10 [00:02<00:00, 4.24it/s]
Prediction
stability-ai/sdxl:7762fd07IDvu42q7dbkm6iicbpal4v6uvbqmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An astronaut riding a rainbow unicorn, cinematic, dramatic
- refine
- expert_ensemble_refiner
- scheduler
- DDIM
- num_outputs
- 1
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { width: 1024, height: 1024, prompt: "An astronaut riding a rainbow unicorn, cinematic, dramatic", refine: "expert_ensemble_refiner", scheduler: "DDIM", num_outputs: 1, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="An astronaut riding a rainbow unicorn, cinematic, dramatic"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="DDIM"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-26T21:04:37.933562Z", "created_at": "2023-07-26T21:04:23.762683Z", "data_removed": false, "error": null, "id": "vu42q7dbkm6iicbpal4v6uvbqm", "input": { "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 12103\ntxt2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:34, 1.14it/s]\n 5%|▌ | 2/40 [00:01<00:18, 2.10it/s]\n 8%|▊ | 3/40 [00:01<00:12, 2.86it/s]\n 10%|█ | 4/40 [00:01<00:10, 3.44it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.87it/s]\n 15%|█▌ | 6/40 [00:01<00:08, 4.19it/s]\n 18%|█▊ | 7/40 [00:02<00:07, 4.43it/s]\n 20%|██ | 8/40 [00:02<00:06, 4.60it/s]\n 22%|██▎ | 9/40 [00:02<00:06, 4.72it/s]\n 25%|██▌ | 10/40 [00:02<00:06, 4.80it/s]\n 28%|██▊ | 11/40 [00:02<00:05, 4.86it/s]\n 30%|███ | 12/40 [00:03<00:05, 4.90it/s]\n 32%|███▎ | 13/40 [00:03<00:05, 4.93it/s]\n 35%|███▌ | 14/40 [00:03<00:05, 4.95it/s]\n 38%|███▊ | 15/40 [00:03<00:05, 4.97it/s]\n 40%|████ | 16/40 [00:03<00:04, 4.99it/s]\n 42%|████▎ | 17/40 [00:04<00:04, 5.00it/s]\n 45%|████▌ | 18/40 [00:04<00:04, 5.02it/s]\n 48%|████▊ | 19/40 [00:04<00:04, 5.02it/s]\n 50%|█████ | 20/40 [00:04<00:03, 5.03it/s]\n 52%|█████▎ | 21/40 [00:04<00:03, 5.03it/s]\n 55%|█████▌ | 22/40 [00:05<00:03, 5.03it/s]\n 57%|█████▊ | 23/40 [00:05<00:03, 5.03it/s]\n 60%|██████ | 24/40 [00:05<00:03, 5.04it/s]\n 62%|██████▎ | 25/40 [00:05<00:02, 5.05it/s]\n 65%|██████▌ | 26/40 [00:05<00:02, 5.04it/s]\n 68%|██████▊ | 27/40 [00:06<00:02, 5.03it/s]\n 70%|███████ | 28/40 [00:06<00:02, 5.03it/s]\n 72%|███████▎ | 29/40 [00:06<00:02, 5.03it/s]\n 75%|███████▌ | 30/40 [00:06<00:01, 5.04it/s]\n 78%|███████▊ | 31/40 [00:06<00:01, 5.03it/s]\n 80%|████████ | 32/40 [00:07<00:01, 5.02it/s]\n 82%|████████▎ | 33/40 [00:07<00:01, 5.02it/s]\n 85%|████████▌ | 34/40 [00:07<00:01, 5.02it/s]\n 88%|████████▊ | 35/40 [00:07<00:00, 5.03it/s]\n 90%|█████████ | 36/40 [00:07<00:00, 5.03it/s]\n 92%|█████████▎| 37/40 [00:08<00:00, 5.02it/s]\n 95%|█████████▌| 38/40 [00:08<00:00, 5.02it/s]\n 98%|█████████▊| 39/40 [00:08<00:00, 5.02it/s]\n100%|██████████| 40/40 [00:08<00:00, 5.02it/s]\n100%|██████████| 40/40 [00:08<00:00, 4.63it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.24it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.33it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.36it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.37it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.37it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.38it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.38it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.39it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.37it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.37it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.37it/s]", "metrics": { "predict_time": 14.149563, "total_time": 14.170879 }, "output": [ "https://replicate.delivery/pbxt/E6Ftpfi0dF1SOi4b6ltUwsfdxUf7zTQSfdhmJfRcfGTdZ88UE/out-0.png" ], "started_at": "2023-07-26T21:04:23.783999Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vu42q7dbkm6iicbpal4v6uvbqm", "cancel": "https://api.replicate.com/v1/predictions/vu42q7dbkm6iicbpal4v6uvbqm/cancel" }, "version": "2f779eb9b23b34fe171f8eaa021b8261566f0d2c10cd2674063e7dbcd351509e" }
Generated inUsing seed: 12103 txt2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:34, 1.14it/s] 5%|▌ | 2/40 [00:01<00:18, 2.10it/s] 8%|▊ | 3/40 [00:01<00:12, 2.86it/s] 10%|█ | 4/40 [00:01<00:10, 3.44it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.87it/s] 15%|█▌ | 6/40 [00:01<00:08, 4.19it/s] 18%|█▊ | 7/40 [00:02<00:07, 4.43it/s] 20%|██ | 8/40 [00:02<00:06, 4.60it/s] 22%|██▎ | 9/40 [00:02<00:06, 4.72it/s] 25%|██▌ | 10/40 [00:02<00:06, 4.80it/s] 28%|██▊ | 11/40 [00:02<00:05, 4.86it/s] 30%|███ | 12/40 [00:03<00:05, 4.90it/s] 32%|███▎ | 13/40 [00:03<00:05, 4.93it/s] 35%|███▌ | 14/40 [00:03<00:05, 4.95it/s] 38%|███▊ | 15/40 [00:03<00:05, 4.97it/s] 40%|████ | 16/40 [00:03<00:04, 4.99it/s] 42%|████▎ | 17/40 [00:04<00:04, 5.00it/s] 45%|████▌ | 18/40 [00:04<00:04, 5.02it/s] 48%|████▊ | 19/40 [00:04<00:04, 5.02it/s] 50%|█████ | 20/40 [00:04<00:03, 5.03it/s] 52%|█████▎ | 21/40 [00:04<00:03, 5.03it/s] 55%|█████▌ | 22/40 [00:05<00:03, 5.03it/s] 57%|█████▊ | 23/40 [00:05<00:03, 5.03it/s] 60%|██████ | 24/40 [00:05<00:03, 5.04it/s] 62%|██████▎ | 25/40 [00:05<00:02, 5.05it/s] 65%|██████▌ | 26/40 [00:05<00:02, 5.04it/s] 68%|██████▊ | 27/40 [00:06<00:02, 5.03it/s] 70%|███████ | 28/40 [00:06<00:02, 5.03it/s] 72%|███████▎ | 29/40 [00:06<00:02, 5.03it/s] 75%|███████▌ | 30/40 [00:06<00:01, 5.04it/s] 78%|███████▊ | 31/40 [00:06<00:01, 5.03it/s] 80%|████████ | 32/40 [00:07<00:01, 5.02it/s] 82%|████████▎ | 33/40 [00:07<00:01, 5.02it/s] 85%|████████▌ | 34/40 [00:07<00:01, 5.02it/s] 88%|████████▊ | 35/40 [00:07<00:00, 5.03it/s] 90%|█████████ | 36/40 [00:07<00:00, 5.03it/s] 92%|█████████▎| 37/40 [00:08<00:00, 5.02it/s] 95%|█████████▌| 38/40 [00:08<00:00, 5.02it/s] 98%|█████████▊| 39/40 [00:08<00:00, 5.02it/s] 100%|██████████| 40/40 [00:08<00:00, 5.02it/s] 100%|██████████| 40/40 [00:08<00:00, 4.63it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.24it/s] 20%|██ | 2/10 [00:00<00:01, 4.33it/s] 30%|███ | 3/10 [00:00<00:01, 4.36it/s] 40%|████ | 4/10 [00:00<00:01, 4.37it/s] 50%|█████ | 5/10 [00:01<00:01, 4.37it/s] 60%|██████ | 6/10 [00:01<00:00, 4.38it/s] 70%|███████ | 7/10 [00:01<00:00, 4.38it/s] 80%|████████ | 8/10 [00:01<00:00, 4.39it/s] 90%|█████████ | 9/10 [00:02<00:00, 4.37it/s] 100%|██████████| 10/10 [00:02<00:00, 4.37it/s] 100%|██████████| 10/10 [00:02<00:00, 4.37it/s]
Prediction
stability-ai/sdxl:7762fd07IDz4x5jkdbsnoceeuwmk5lka57uuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- 46099
- width
- 1024
- height
- 1024
- prompt
- A rainbow coloured bear
- refine
- base_image_refiner
- scheduler
- KarrasDPM
- num_outputs
- 1
- refine_steps
- 50
- guidance_scale
- 7.5
- high_noise_frac
- 0.8
- prompt_strength
- 0.95
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", "seed": 46099, "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured bear", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "refine_steps": 50, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.95, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { mask: "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", seed: 46099, image: "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", width: 1024, height: 1024, prompt: "A rainbow coloured bear", refine: "base_image_refiner", scheduler: "KarrasDPM", num_outputs: 1, refine_steps: 50, guidance_scale: 7.5, high_noise_frac: 0.8, prompt_strength: 0.95, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "mask": "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", "seed": 46099, "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured bear", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "refine_steps": 50, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.95, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "mask": "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", "seed": 46099, "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured bear", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "refine_steps": 50, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.95, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'mask="https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png"' \ -i 'seed=46099' \ -i 'image="https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A rainbow coloured bear"' \ -i 'refine="base_image_refiner"' \ -i 'scheduler="KarrasDPM"' \ -i 'num_outputs=1' \ -i 'refine_steps=50' \ -i 'guidance_scale=7.5' \ -i 'high_noise_frac=0.8' \ -i 'prompt_strength=0.95' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", "seed": 46099, "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured bear", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "refine_steps": 50, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.95, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-07-27T12:36:29.921311Z", "created_at": "2023-07-27T12:36:13.439420Z", "data_removed": false, "error": null, "id": "z4x5jkdbsnoceeuwmk5lka57uu", "input": { "mask": "https://replicate.delivery/pbxt/JFIZFfJsSnWgxbTmEYLqhHIGdZo9o2BX3p47wSdn55HWtMON/mask1.png", "seed": 46099, "image": "https://replicate.delivery/pbxt/JF3foGR90vm9BXSEXNaYkaeVKHYbJPinmpbMFvRtlDpH4MMk/out-0-1.png", "width": 1024, "height": 1024, "prompt": "A rainbow coloured bear", "refine": "base_image_refiner", "scheduler": "KarrasDPM", "num_outputs": 1, "refine_steps": 50, "guidance_scale": 7.5, "high_noise_frac": 0.8, "prompt_strength": 0.95, "num_inference_steps": 50 }, "logs": "Using seed: 46099\ninpainting mode\n 0%| | 0/47 [00:00<?, ?it/s]\n 2%|▏ | 1/47 [00:00<00:09, 4.96it/s]\n 4%|▍ | 2/47 [00:00<00:09, 4.95it/s]\n 6%|▋ | 3/47 [00:00<00:08, 4.94it/s]\n 9%|▊ | 4/47 [00:00<00:08, 4.94it/s]\n 11%|█ | 5/47 [00:01<00:08, 4.93it/s]\n 13%|█▎ | 6/47 [00:01<00:08, 4.93it/s]\n 15%|█▍ | 7/47 [00:01<00:08, 4.93it/s]\n 17%|█▋ | 8/47 [00:01<00:07, 4.92it/s]\n 19%|█▉ | 9/47 [00:01<00:07, 4.92it/s]\n 21%|██▏ | 10/47 [00:02<00:07, 4.91it/s]\n 23%|██▎ | 11/47 [00:02<00:07, 4.91it/s]\n 26%|██▌ | 12/47 [00:02<00:07, 4.92it/s]\n 28%|██▊ | 13/47 [00:02<00:06, 4.92it/s]\n 30%|██▉ | 14/47 [00:02<00:06, 4.91it/s]\n 32%|███▏ | 15/47 [00:03<00:06, 4.90it/s]\n 34%|███▍ | 16/47 [00:03<00:06, 4.90it/s]\n 36%|███▌ | 17/47 [00:03<00:06, 4.91it/s]\n 38%|███▊ | 18/47 [00:03<00:05, 4.90it/s]\n 40%|████ | 19/47 [00:03<00:05, 4.90it/s]\n 43%|████▎ | 20/47 [00:04<00:05, 4.90it/s]\n 45%|████▍ | 21/47 [00:04<00:05, 4.90it/s]\n 47%|████▋ | 22/47 [00:04<00:05, 4.90it/s]\n 49%|████▉ | 23/47 [00:04<00:04, 4.90it/s]\n 51%|█████ | 24/47 [00:04<00:04, 4.90it/s]\n 53%|█████▎ | 25/47 [00:05<00:04, 4.90it/s]\n 55%|█████▌ | 26/47 [00:05<00:04, 4.90it/s]\n 57%|█████▋ | 27/47 [00:05<00:04, 4.90it/s]\n 60%|█████▉ | 28/47 [00:05<00:03, 4.90it/s]\n 62%|██████▏ | 29/47 [00:05<00:03, 4.89it/s]\n 64%|██████▍ | 30/47 [00:06<00:03, 4.89it/s]\n 66%|██████▌ | 31/47 [00:06<00:03, 4.89it/s]\n 68%|██████▊ | 32/47 [00:06<00:03, 4.89it/s]\n 70%|███████ | 33/47 [00:06<00:02, 4.89it/s]\n 72%|███████▏ | 34/47 [00:06<00:02, 4.89it/s]\n 74%|███████▍ | 35/47 [00:07<00:02, 4.89it/s]\n 77%|███████▋ | 36/47 [00:07<00:02, 4.90it/s]\n 79%|███████▊ | 37/47 [00:07<00:02, 4.91it/s]\n 81%|████████ | 38/47 [00:07<00:01, 4.91it/s]\n 83%|████████▎ | 39/47 [00:07<00:01, 4.92it/s]\n 85%|████████▌ | 40/47 [00:08<00:01, 4.92it/s]\n 87%|████████▋ | 41/47 [00:08<00:01, 4.91it/s]\n 89%|████████▉ | 42/47 [00:08<00:01, 4.86it/s]\n 91%|█████████▏| 43/47 [00:08<00:00, 4.87it/s]\n 94%|█████████▎| 44/47 [00:08<00:00, 4.89it/s]\n 96%|█████████▌| 45/47 [00:09<00:00, 4.91it/s]\n98%|█████████▊| 46/47 [00:09<00:00, 4.92it/s]\n98%|█████████▊| 46/47 [00:09<00:00, 4.91it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:03, 4.33it/s]\n 13%|█▎ | 2/15 [00:00<00:03, 4.32it/s]\n 20%|██ | 3/15 [00:00<00:02, 4.32it/s]\n 27%|██▋ | 4/15 [00:00<00:02, 4.31it/s]\n 33%|███▎ | 5/15 [00:01<00:02, 4.31it/s]\n 40%|████ | 6/15 [00:01<00:02, 4.31it/s]\n 47%|████▋ | 7/15 [00:01<00:01, 4.31it/s]\n 53%|█████▎ | 8/15 [00:01<00:01, 4.31it/s]\n 60%|██████ | 9/15 [00:02<00:01, 4.30it/s]\n 67%|██████▋ | 10/15 [00:02<00:01, 4.30it/s]\n 73%|███████▎ | 11/15 [00:02<00:00, 4.30it/s]\n 80%|████████ | 12/15 [00:02<00:00, 4.30it/s]\n 87%|████████▋ | 13/15 [00:03<00:00, 4.30it/s]\n 93%|█████████▎| 14/15 [00:03<00:00, 4.31it/s]\n100%|██████████| 15/15 [00:03<00:00, 4.31it/s]\n100%|██████████| 15/15 [00:03<00:00, 4.31it/s]", "metrics": { "predict_time": 16.506152, "total_time": 16.481891 }, "output": [ "https://replicate.delivery/pbxt/NfV2n6S8wBVRekodJQ6QObMKAS5ntznisaIaAi3fVlIY2CoiA/out-0.png" ], "started_at": "2023-07-27T12:36:13.415159Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z4x5jkdbsnoceeuwmk5lka57uu", "cancel": "https://api.replicate.com/v1/predictions/z4x5jkdbsnoceeuwmk5lka57uu/cancel" }, "version": "2b017d9b67edd2ee1401238df49d75da53c523f36e363881e057f5dc3ed3c5b2" }
Generated inUsing seed: 46099 inpainting mode 0%| | 0/47 [00:00<?, ?it/s] 2%|▏ | 1/47 [00:00<00:09, 4.96it/s] 4%|▍ | 2/47 [00:00<00:09, 4.95it/s] 6%|▋ | 3/47 [00:00<00:08, 4.94it/s] 9%|▊ | 4/47 [00:00<00:08, 4.94it/s] 11%|█ | 5/47 [00:01<00:08, 4.93it/s] 13%|█▎ | 6/47 [00:01<00:08, 4.93it/s] 15%|█▍ | 7/47 [00:01<00:08, 4.93it/s] 17%|█▋ | 8/47 [00:01<00:07, 4.92it/s] 19%|█▉ | 9/47 [00:01<00:07, 4.92it/s] 21%|██▏ | 10/47 [00:02<00:07, 4.91it/s] 23%|██▎ | 11/47 [00:02<00:07, 4.91it/s] 26%|██▌ | 12/47 [00:02<00:07, 4.92it/s] 28%|██▊ | 13/47 [00:02<00:06, 4.92it/s] 30%|██▉ | 14/47 [00:02<00:06, 4.91it/s] 32%|███▏ | 15/47 [00:03<00:06, 4.90it/s] 34%|███▍ | 16/47 [00:03<00:06, 4.90it/s] 36%|███▌ | 17/47 [00:03<00:06, 4.91it/s] 38%|███▊ | 18/47 [00:03<00:05, 4.90it/s] 40%|████ | 19/47 [00:03<00:05, 4.90it/s] 43%|████▎ | 20/47 [00:04<00:05, 4.90it/s] 45%|████▍ | 21/47 [00:04<00:05, 4.90it/s] 47%|████▋ | 22/47 [00:04<00:05, 4.90it/s] 49%|████▉ | 23/47 [00:04<00:04, 4.90it/s] 51%|█████ | 24/47 [00:04<00:04, 4.90it/s] 53%|█████▎ | 25/47 [00:05<00:04, 4.90it/s] 55%|█████▌ | 26/47 [00:05<00:04, 4.90it/s] 57%|█████▋ | 27/47 [00:05<00:04, 4.90it/s] 60%|█████▉ | 28/47 [00:05<00:03, 4.90it/s] 62%|██████▏ | 29/47 [00:05<00:03, 4.89it/s] 64%|██████▍ | 30/47 [00:06<00:03, 4.89it/s] 66%|██████▌ | 31/47 [00:06<00:03, 4.89it/s] 68%|██████▊ | 32/47 [00:06<00:03, 4.89it/s] 70%|███████ | 33/47 [00:06<00:02, 4.89it/s] 72%|███████▏ | 34/47 [00:06<00:02, 4.89it/s] 74%|███████▍ | 35/47 [00:07<00:02, 4.89it/s] 77%|███████▋ | 36/47 [00:07<00:02, 4.90it/s] 79%|███████▊ | 37/47 [00:07<00:02, 4.91it/s] 81%|████████ | 38/47 [00:07<00:01, 4.91it/s] 83%|████████▎ | 39/47 [00:07<00:01, 4.92it/s] 85%|████████▌ | 40/47 [00:08<00:01, 4.92it/s] 87%|████████▋ | 41/47 [00:08<00:01, 4.91it/s] 89%|████████▉ | 42/47 [00:08<00:01, 4.86it/s] 91%|█████████▏| 43/47 [00:08<00:00, 4.87it/s] 94%|█████████▎| 44/47 [00:08<00:00, 4.89it/s] 96%|█████████▌| 45/47 [00:09<00:00, 4.91it/s] 98%|█████████▊| 46/47 [00:09<00:00, 4.92it/s] 98%|█████████▊| 46/47 [00:09<00:00, 4.91it/s] 0%| | 0/15 [00:00<?, ?it/s] 7%|▋ | 1/15 [00:00<00:03, 4.33it/s] 13%|█▎ | 2/15 [00:00<00:03, 4.32it/s] 20%|██ | 3/15 [00:00<00:02, 4.32it/s] 27%|██▋ | 4/15 [00:00<00:02, 4.31it/s] 33%|███▎ | 5/15 [00:01<00:02, 4.31it/s] 40%|████ | 6/15 [00:01<00:02, 4.31it/s] 47%|████▋ | 7/15 [00:01<00:01, 4.31it/s] 53%|█████▎ | 8/15 [00:01<00:01, 4.31it/s] 60%|██████ | 9/15 [00:02<00:01, 4.30it/s] 67%|██████▋ | 10/15 [00:02<00:01, 4.30it/s] 73%|███████▎ | 11/15 [00:02<00:00, 4.30it/s] 80%|████████ | 12/15 [00:02<00:00, 4.30it/s] 87%|████████▋ | 13/15 [00:03<00:00, 4.30it/s] 93%|█████████▎| 14/15 [00:03<00:00, 4.31it/s] 100%|██████████| 15/15 [00:03<00:00, 4.31it/s] 100%|██████████| 15/15 [00:03<00:00, 4.31it/s]
Prediction
stability-ai/sdxl:7762fd07IDdzsqmb3bg4lqpjkz2iptjqgccmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- An astronaut riding a rainbow unicorn, cinematic, dramatic
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 768, "height": 768, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", { input: { width: 768, height: 768, prompt: "An astronaut riding a rainbow unicorn, cinematic, dramatic", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input={ "width": 768, "height": 768, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "input": { "width": 768, "height": 768, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="An astronaut riding a rainbow unicorn, cinematic, dramatic"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt=""' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=25'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/stability-ai/sdxl@sha256:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 768, "height": 768, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T17:10:12.909279Z", "created_at": "2023-10-12T17:10:07.956869Z", "data_removed": false, "error": null, "id": "dzsqmb3bg4lqpjkz2iptjqgccm", "input": { "width": 768, "height": 768, "prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 16010\nPrompt: An astronaut riding a rainbow unicorn, cinematic, dramatic\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:01, 7.96it/s]\n 12%|█▎ | 2/16 [00:00<00:01, 7.89it/s]\n 19%|█▉ | 3/16 [00:00<00:01, 7.86it/s]\n 25%|██▌ | 4/16 [00:00<00:01, 7.85it/s]\n 31%|███▏ | 5/16 [00:00<00:01, 7.83it/s]\n 38%|███▊ | 6/16 [00:00<00:01, 7.82it/s]\n 44%|████▍ | 7/16 [00:00<00:01, 7.81it/s]\n 50%|█████ | 8/16 [00:01<00:01, 7.80it/s]\n 56%|█████▋ | 9/16 [00:01<00:00, 7.80it/s]\n 62%|██████▎ | 10/16 [00:01<00:00, 7.78it/s]\n 69%|██████▉ | 11/16 [00:01<00:00, 7.79it/s]\n 75%|███████▌ | 12/16 [00:01<00:00, 7.79it/s]\n 81%|████████▏ | 13/16 [00:01<00:00, 7.78it/s]\n 88%|████████▊ | 14/16 [00:01<00:00, 7.79it/s]\n 94%|█████████▍| 15/16 [00:01<00:00, 7.79it/s]\n100%|██████████| 16/16 [00:02<00:00, 7.79it/s]\n100%|██████████| 16/16 [00:02<00:00, 7.81it/s]\n 0%| | 0/5 [00:00<?, ?it/s]\n 20%|██ | 1/5 [00:00<00:00, 7.47it/s]\n 40%|████ | 2/5 [00:00<00:00, 7.42it/s]\n 60%|██████ | 3/5 [00:00<00:00, 7.40it/s]\n 80%|████████ | 4/5 [00:00<00:00, 7.39it/s]\n100%|██████████| 5/5 [00:00<00:00, 7.39it/s]\n100%|██████████| 5/5 [00:00<00:00, 7.40it/s]", "metrics": { "predict_time": 4.981337, "total_time": 4.95241 }, "output": [ "https://pbxt.replicate.delivery/YXbcLudoHBIYHV6L0HbcTx5iRzLFMwygLr3vhGpZI35caXbE/out-0.png" ], "started_at": "2023-10-12T17:10:07.927942Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dzsqmb3bg4lqpjkz2iptjqgccm", "cancel": "https://api.replicate.com/v1/predictions/dzsqmb3bg4lqpjkz2iptjqgccm/cancel" }, "version": "c221b2b8ef527988fb59bf24a8b97c4561f1c671f73bd389f866bfb27c061316" }
Generated inUsing seed: 16010 Prompt: An astronaut riding a rainbow unicorn, cinematic, dramatic txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:01, 7.96it/s] 12%|█▎ | 2/16 [00:00<00:01, 7.89it/s] 19%|█▉ | 3/16 [00:00<00:01, 7.86it/s] 25%|██▌ | 4/16 [00:00<00:01, 7.85it/s] 31%|███▏ | 5/16 [00:00<00:01, 7.83it/s] 38%|███▊ | 6/16 [00:00<00:01, 7.82it/s] 44%|████▍ | 7/16 [00:00<00:01, 7.81it/s] 50%|█████ | 8/16 [00:01<00:01, 7.80it/s] 56%|█████▋ | 9/16 [00:01<00:00, 7.80it/s] 62%|██████▎ | 10/16 [00:01<00:00, 7.78it/s] 69%|██████▉ | 11/16 [00:01<00:00, 7.79it/s] 75%|███████▌ | 12/16 [00:01<00:00, 7.79it/s] 81%|████████▏ | 13/16 [00:01<00:00, 7.78it/s] 88%|████████▊ | 14/16 [00:01<00:00, 7.79it/s] 94%|█████████▍| 15/16 [00:01<00:00, 7.79it/s] 100%|██████████| 16/16 [00:02<00:00, 7.79it/s] 100%|██████████| 16/16 [00:02<00:00, 7.81it/s] 0%| | 0/5 [00:00<?, ?it/s] 20%|██ | 1/5 [00:00<00:00, 7.47it/s] 40%|████ | 2/5 [00:00<00:00, 7.42it/s] 60%|██████ | 3/5 [00:00<00:00, 7.40it/s] 80%|████████ | 4/5 [00:00<00:00, 7.39it/s] 100%|██████████| 5/5 [00:00<00:00, 7.39it/s] 100%|██████████| 5/5 [00:00<00:00, 7.40it/s]
Want to make some of these yourself?
Run this model