Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run stephendmalloy/gowaterbottle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"stephendmalloy/gowaterbottle:7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711",
{
input: {
width: 1024,
height: 1024,
prompt: "A photo of TOK water bottle, in a busy coffee shop",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run stephendmalloy/gowaterbottle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"stephendmalloy/gowaterbottle:7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711",
input={
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK water bottle, in a busy coffee shop",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stephendmalloy/gowaterbottle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK water bottle, in a busy coffee shop",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run stephendmalloy/gowaterbottle using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/stephendmalloy/gowaterbottle@sha256:7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A photo of TOK water bottle, in a busy coffee shop"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run stephendmalloy/gowaterbottle using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/stephendmalloy/gowaterbottle@sha256:7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A photo of TOK water bottle, in a busy coffee shop", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.019. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-02-09T23:03:46.935666Z",
"created_at": "2024-02-09T23:03:27.560884Z",
"data_removed": false,
"error": null,
"id": "mniwkqlbj3wg5pz2ipohso36sm",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK water bottle, in a busy coffee shop",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 56162\nEnsuring enough disk space...\nFree disk space: 1777420779520\nDownloading weights: https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar\n2024-02-09T23:03:29Z | INFO | [ Initiating ] dest=/src/weights-cache/a87263fc3cb61291 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar\n2024-02-09T23:03:30Z | INFO | [ Complete ] dest=/src/weights-cache/a87263fc3cb61291 size=\"186 MB\" total_elapsed=0.629s url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar\nb''\nDownloaded weights in 0.7754557132720947 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A photo of <s0><s1> water bottle, in a busy coffee shop\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.69it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.68it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.65it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.64it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.64it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.64it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.62it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.63it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.63it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.65it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.65it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]",
"metrics": {
"predict_time": 17.318059,
"total_time": 19.374782
},
"output": [
"https://replicate.delivery/pbxt/c1EqfHfTPYgo5kr29Zc6sIsHBRWgMwNU4TMFPOdijJfjKMqkA/out-0.png"
],
"started_at": "2024-02-09T23:03:29.617607Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/mniwkqlbj3wg5pz2ipohso36sm",
"cancel": "https://api.replicate.com/v1/predictions/mniwkqlbj3wg5pz2ipohso36sm/cancel"
},
"version": "7f8acdd90e9b74cb10d00dd0aa25e8e1a84df18b8600bf886f9e897687747711"
}
Using seed: 56162
Ensuring enough disk space...
Free disk space: 1777420779520
Downloading weights: https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
2024-02-09T23:03:29Z | INFO | [ Initiating ] dest=/src/weights-cache/a87263fc3cb61291 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
2024-02-09T23:03:30Z | INFO | [ Complete ] dest=/src/weights-cache/a87263fc3cb61291 size="186 MB" total_elapsed=0.629s url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
b''
Downloaded weights in 0.7754557132720947 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of <s0><s1> water bottle, in a busy coffee shop
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.69it/s]
4%|▍ | 2/50 [00:00<00:13, 3.68it/s]
6%|▌ | 3/50 [00:00<00:12, 3.67it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.65it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:10, 3.64it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.64it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.64it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.62it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]
50%|█████ | 25/50 [00:06<00:06, 3.64it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.63it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s]
60%|██████ | 30/50 [00:08<00:05, 3.63it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
This model costs approximately $0.019 to run on Replicate, or 52 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 20 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 56162
Ensuring enough disk space...
Free disk space: 1777420779520
Downloading weights: https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
2024-02-09T23:03:29Z | INFO | [ Initiating ] dest=/src/weights-cache/a87263fc3cb61291 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
2024-02-09T23:03:30Z | INFO | [ Complete ] dest=/src/weights-cache/a87263fc3cb61291 size="186 MB" total_elapsed=0.629s url=https://replicate.delivery/pbxt/8cySTK1wq9JHApNR5A3veUPFlcZ76nUsL51sJhPIIfNNXCVSA/trained_model.tar
b''
Downloaded weights in 0.7754557132720947 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of <s0><s1> water bottle, in a busy coffee shop
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.69it/s]
4%|▍ | 2/50 [00:00<00:13, 3.68it/s]
6%|▌ | 3/50 [00:00<00:12, 3.67it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.65it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:10, 3.64it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.64it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.64it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.62it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]
50%|█████ | 25/50 [00:06<00:06, 3.64it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.63it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s]
60%|██████ | 30/50 [00:08<00:05, 3.63it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]