Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
ai-forever /kandinsky-2:3c6374e7
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run ai-forever/kandinsky-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"ai-forever/kandinsky-2:3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9",
{
input: {
width: 512,
height: 512,
prompt: "red cat, 4k photo",
scheduler: "p_sampler",
batch_size: 1,
prior_steps: "5",
output_format: "webp",
guidance_scale: 4,
output_quality: 80,
prior_cf_scale: 4,
num_inference_steps: 100
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run ai-forever/kandinsky-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"ai-forever/kandinsky-2:3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9",
input={
"width": 512,
"height": 512,
"prompt": "red cat, 4k photo",
"scheduler": "p_sampler",
"batch_size": 1,
"prior_steps": "5",
"output_format": "webp",
"guidance_scale": 4,
"output_quality": 80,
"prior_cf_scale": 4,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run ai-forever/kandinsky-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9",
"input": {
"width": 512,
"height": 512,
"prompt": "red cat, 4k photo",
"scheduler": "p_sampler",
"batch_size": 1,
"prior_steps": "5",
"output_format": "webp",
"guidance_scale": 4,
"output_quality": 80,
"prior_cf_scale": 4,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-04-05T14:18:17.379573Z",
"created_at": "2023-04-05T14:17:05.824020Z",
"data_removed": false,
"error": null,
"id": "wixq75uo65glnjcdgrqtngdz4q",
"input": {
"prompt": "red cat, 4k photo",
"scheduler": "p_sampler",
"prior_steps": "5",
"guidance_scale": 4,
"prior_cf_scale": 4,
"num_inference_steps": 100
},
"logs": "0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<01:21, 1.21it/s]\n 2%|▏ | 2/100 [00:01<01:08, 1.42it/s]\n 3%|▎ | 3/100 [00:02<01:04, 1.51it/s]\n 4%|▍ | 4/100 [00:02<01:02, 1.54it/s]\n 5%|▌ | 5/100 [00:03<01:00, 1.56it/s]\n 6%|▌ | 6/100 [00:03<01:00, 1.57it/s]\n 7%|▋ | 7/100 [00:04<00:59, 1.57it/s]\n 8%|▊ | 8/100 [00:05<00:58, 1.58it/s]\n 9%|▉ | 9/100 [00:05<00:57, 1.58it/s]\n 10%|█ | 10/100 [00:06<00:56, 1.58it/s]\n 11%|█ | 11/100 [00:07<00:56, 1.58it/s]\n 12%|█▏ | 12/100 [00:07<00:55, 1.58it/s]\n 13%|█▎ | 13/100 [00:08<00:54, 1.59it/s]\n 14%|█▍ | 14/100 [00:08<00:54, 1.58it/s]\n 15%|█▌ | 15/100 [00:09<00:53, 1.58it/s]\n 16%|█▌ | 16/100 [00:10<00:53, 1.58it/s]\n 17%|█▋ | 17/100 [00:10<00:52, 1.59it/s]\n 18%|█▊ | 18/100 [00:11<00:51, 1.59it/s]\n 19%|█▉ | 19/100 [00:12<00:51, 1.59it/s]\n 20%|██ | 20/100 [00:12<00:50, 1.58it/s]\n 21%|██ | 21/100 [00:13<00:50, 1.58it/s]\n 22%|██▏ | 22/100 [00:14<00:49, 1.58it/s]\n 23%|██▎ | 23/100 [00:14<00:48, 1.58it/s]\n 24%|██▍ | 24/100 [00:15<00:48, 1.58it/s]\n 25%|██▌ | 25/100 [00:15<00:47, 1.57it/s]\n 26%|██▌ | 26/100 [00:16<00:46, 1.58it/s]\n 27%|██▋ | 27/100 [00:17<00:46, 1.57it/s]\n 28%|██▊ | 28/100 [00:17<00:45, 1.58it/s]\n 29%|██▉ | 29/100 [00:18<00:45, 1.57it/s]\n 30%|███ | 30/100 [00:19<00:44, 1.57it/s]\n 31%|███ | 31/100 [00:19<00:44, 1.57it/s]\n 32%|███▏ | 32/100 [00:20<00:43, 1.57it/s]\n 33%|███▎ | 33/100 [00:21<00:42, 1.57it/s]\n 34%|███▍ | 34/100 [00:21<00:42, 1.57it/s]\n 35%|███▌ | 35/100 [00:22<00:41, 1.56it/s]\n 36%|███▌ | 36/100 [00:22<00:40, 1.56it/s]\n 37%|███▋ | 37/100 [00:23<00:40, 1.56it/s]\n 38%|███▊ | 38/100 [00:24<00:39, 1.56it/s]\n 39%|███▉ | 39/100 [00:24<00:39, 1.56it/s]\n 40%|████ | 40/100 [00:25<00:38, 1.56it/s]\n 41%|████ | 41/100 [00:26<00:37, 1.56it/s]\n 42%|████▏ | 42/100 [00:26<00:37, 1.55it/s]\n 43%|████▎ | 43/100 [00:27<00:36, 1.56it/s]\n 44%|████▍ | 44/100 [00:28<00:35, 1.56it/s]\n 45%|████▌ | 45/100 [00:28<00:35, 1.56it/s]\n 46%|████▌ | 46/100 [00:29<00:34, 1.56it/s]\n 47%|████▋ | 47/100 [00:30<00:33, 1.56it/s]\n 48%|████▊ | 48/100 [00:30<00:33, 1.56it/s]\n 49%|████▉ | 49/100 [00:31<00:32, 1.56it/s]\n 50%|█████ | 50/100 [00:31<00:32, 1.56it/s]\n 51%|█████ | 51/100 [00:32<00:31, 1.56it/s]\n 52%|█████▏ | 52/100 [00:33<00:30, 1.55it/s]\n 53%|█████▎ | 53/100 [00:33<00:30, 1.55it/s]\n 54%|█████▍ | 54/100 [00:34<00:29, 1.55it/s]\n 55%|█████▌ | 55/100 [00:35<00:28, 1.55it/s]\n 56%|█████▌ | 56/100 [00:35<00:28, 1.55it/s]\n 57%|█████▋ | 57/100 [00:36<00:27, 1.55it/s]\n 58%|█████▊ | 58/100 [00:37<00:27, 1.54it/s]\n 59%|█████▉ | 59/100 [00:37<00:26, 1.54it/s]\n 60%|██████ | 60/100 [00:38<00:25, 1.54it/s]\n 61%|██████ | 61/100 [00:39<00:25, 1.54it/s]\n 62%|██████▏ | 62/100 [00:39<00:24, 1.54it/s]\n 63%|██████▎ | 63/100 [00:40<00:24, 1.54it/s]\n 64%|██████▍ | 64/100 [00:41<00:23, 1.54it/s]\n 65%|██████▌ | 65/100 [00:41<00:22, 1.54it/s]\n 66%|██████▌ | 66/100 [00:42<00:22, 1.54it/s]\n 67%|██████▋ | 67/100 [00:42<00:21, 1.54it/s]\n 68%|██████▊ | 68/100 [00:43<00:20, 1.54it/s]\n 69%|██████▉ | 69/100 [00:44<00:20, 1.54it/s]\n 70%|███████ | 70/100 [00:44<00:19, 1.54it/s]\n 71%|███████ | 71/100 [00:45<00:18, 1.54it/s]\n 72%|███████▏ | 72/100 [00:46<00:18, 1.54it/s]\n 73%|███████▎ | 73/100 [00:46<00:17, 1.53it/s]\n 74%|███████▍ | 74/100 [00:47<00:16, 1.54it/s]\n 75%|███████▌ | 75/100 [00:48<00:16, 1.53it/s]\n 76%|███████▌ | 76/100 [00:48<00:15, 1.54it/s]\n 77%|███████▋ | 77/100 [00:49<00:14, 1.54it/s]\n 78%|███████▊ | 78/100 [00:50<00:14, 1.54it/s]\n 79%|███████▉ | 79/100 [00:50<00:13, 1.54it/s]\n 80%|████████ | 80/100 [00:51<00:13, 1.54it/s]\n 81%|████████ | 81/100 [00:52<00:12, 1.54it/s]\n 82%|████████▏ | 82/100 [00:52<00:11, 1.54it/s]\n 83%|████████▎ | 83/100 [00:53<00:11, 1.54it/s]\n 84%|████████▍ | 84/100 [00:54<00:10, 1.54it/s]\n 85%|████████▌ | 85/100 [00:54<00:09, 1.54it/s]\n 86%|████████▌ | 86/100 [00:55<00:09, 1.54it/s]\n 87%|████████▋ | 87/100 [00:55<00:08, 1.54it/s]\n 88%|████████▊ | 88/100 [00:56<00:07, 1.54it/s]\n 89%|████████▉ | 89/100 [00:57<00:07, 1.54it/s]\n 90%|█████████ | 90/100 [00:57<00:06, 1.54it/s]\n 91%|█████████ | 91/100 [00:58<00:05, 1.54it/s]\n 92%|█████████▏| 92/100 [00:59<00:05, 1.54it/s]\n 93%|█████████▎| 93/100 [00:59<00:04, 1.54it/s]\n 94%|█████████▍| 94/100 [01:00<00:03, 1.54it/s]\n 95%|█████████▌| 95/100 [01:01<00:03, 1.53it/s]\n 96%|█████████▌| 96/100 [01:01<00:02, 1.53it/s]\n 97%|█████████▋| 97/100 [01:02<00:01, 1.53it/s]\n 98%|█████████▊| 98/100 [01:03<00:01, 1.53it/s]\n 99%|█████████▉| 99/100 [01:03<00:00, 1.52it/s]\n100%|██████████| 100/100 [01:04<00:00, 1.52it/s]\n100%|██████████| 100/100 [01:04<00:00, 1.55it/s]",
"metrics": {
"predict_time": 71.261476,
"total_time": 71.555553
},
"output": "https://replicate.delivery/pbxt/NsOpfQRos43e40IzSq4SY7NTtxGodmSWo1m74K17SVpoUzuQA/out.png",
"started_at": "2023-04-05T14:17:06.118097Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/wixq75uo65glnjcdgrqtngdz4q",
"cancel": "https://api.replicate.com/v1/predictions/wixq75uo65glnjcdgrqtngdz4q/cancel"
},
"version": "9c0bf7d5cf2ed934c5921faf61882657c03c4def9d9cb88330c15bd795edb098"
}
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<01:21, 1.21it/s]
2%|▏ | 2/100 [00:01<01:08, 1.42it/s]
3%|▎ | 3/100 [00:02<01:04, 1.51it/s]
4%|▍ | 4/100 [00:02<01:02, 1.54it/s]
5%|▌ | 5/100 [00:03<01:00, 1.56it/s]
6%|▌ | 6/100 [00:03<01:00, 1.57it/s]
7%|▋ | 7/100 [00:04<00:59, 1.57it/s]
8%|▊ | 8/100 [00:05<00:58, 1.58it/s]
9%|▉ | 9/100 [00:05<00:57, 1.58it/s]
10%|█ | 10/100 [00:06<00:56, 1.58it/s]
11%|█ | 11/100 [00:07<00:56, 1.58it/s]
12%|█▏ | 12/100 [00:07<00:55, 1.58it/s]
13%|█▎ | 13/100 [00:08<00:54, 1.59it/s]
14%|█▍ | 14/100 [00:08<00:54, 1.58it/s]
15%|█▌ | 15/100 [00:09<00:53, 1.58it/s]
16%|█▌ | 16/100 [00:10<00:53, 1.58it/s]
17%|█▋ | 17/100 [00:10<00:52, 1.59it/s]
18%|█▊ | 18/100 [00:11<00:51, 1.59it/s]
19%|█▉ | 19/100 [00:12<00:51, 1.59it/s]
20%|██ | 20/100 [00:12<00:50, 1.58it/s]
21%|██ | 21/100 [00:13<00:50, 1.58it/s]
22%|██▏ | 22/100 [00:14<00:49, 1.58it/s]
23%|██▎ | 23/100 [00:14<00:48, 1.58it/s]
24%|██▍ | 24/100 [00:15<00:48, 1.58it/s]
25%|██▌ | 25/100 [00:15<00:47, 1.57it/s]
26%|██▌ | 26/100 [00:16<00:46, 1.58it/s]
27%|██▋ | 27/100 [00:17<00:46, 1.57it/s]
28%|██▊ | 28/100 [00:17<00:45, 1.58it/s]
29%|██▉ | 29/100 [00:18<00:45, 1.57it/s]
30%|███ | 30/100 [00:19<00:44, 1.57it/s]
31%|███ | 31/100 [00:19<00:44, 1.57it/s]
32%|███▏ | 32/100 [00:20<00:43, 1.57it/s]
33%|███▎ | 33/100 [00:21<00:42, 1.57it/s]
34%|███▍ | 34/100 [00:21<00:42, 1.57it/s]
35%|███▌ | 35/100 [00:22<00:41, 1.56it/s]
36%|███▌ | 36/100 [00:22<00:40, 1.56it/s]
37%|███▋ | 37/100 [00:23<00:40, 1.56it/s]
38%|███▊ | 38/100 [00:24<00:39, 1.56it/s]
39%|███▉ | 39/100 [00:24<00:39, 1.56it/s]
40%|████ | 40/100 [00:25<00:38, 1.56it/s]
41%|████ | 41/100 [00:26<00:37, 1.56it/s]
42%|████▏ | 42/100 [00:26<00:37, 1.55it/s]
43%|████▎ | 43/100 [00:27<00:36, 1.56it/s]
44%|████▍ | 44/100 [00:28<00:35, 1.56it/s]
45%|████▌ | 45/100 [00:28<00:35, 1.56it/s]
46%|████▌ | 46/100 [00:29<00:34, 1.56it/s]
47%|████▋ | 47/100 [00:30<00:33, 1.56it/s]
48%|████▊ | 48/100 [00:30<00:33, 1.56it/s]
49%|████▉ | 49/100 [00:31<00:32, 1.56it/s]
50%|█████ | 50/100 [00:31<00:32, 1.56it/s]
51%|█████ | 51/100 [00:32<00:31, 1.56it/s]
52%|█████▏ | 52/100 [00:33<00:30, 1.55it/s]
53%|█████▎ | 53/100 [00:33<00:30, 1.55it/s]
54%|█████▍ | 54/100 [00:34<00:29, 1.55it/s]
55%|█████▌ | 55/100 [00:35<00:28, 1.55it/s]
56%|█████▌ | 56/100 [00:35<00:28, 1.55it/s]
57%|█████▋ | 57/100 [00:36<00:27, 1.55it/s]
58%|█████▊ | 58/100 [00:37<00:27, 1.54it/s]
59%|█████▉ | 59/100 [00:37<00:26, 1.54it/s]
60%|██████ | 60/100 [00:38<00:25, 1.54it/s]
61%|██████ | 61/100 [00:39<00:25, 1.54it/s]
62%|██████▏ | 62/100 [00:39<00:24, 1.54it/s]
63%|██████▎ | 63/100 [00:40<00:24, 1.54it/s]
64%|██████▍ | 64/100 [00:41<00:23, 1.54it/s]
65%|██████▌ | 65/100 [00:41<00:22, 1.54it/s]
66%|██████▌ | 66/100 [00:42<00:22, 1.54it/s]
67%|██████▋ | 67/100 [00:42<00:21, 1.54it/s]
68%|██████▊ | 68/100 [00:43<00:20, 1.54it/s]
69%|██████▉ | 69/100 [00:44<00:20, 1.54it/s]
70%|███████ | 70/100 [00:44<00:19, 1.54it/s]
71%|███████ | 71/100 [00:45<00:18, 1.54it/s]
72%|███████▏ | 72/100 [00:46<00:18, 1.54it/s]
73%|███████▎ | 73/100 [00:46<00:17, 1.53it/s]
74%|███████▍ | 74/100 [00:47<00:16, 1.54it/s]
75%|███████▌ | 75/100 [00:48<00:16, 1.53it/s]
76%|███████▌ | 76/100 [00:48<00:15, 1.54it/s]
77%|███████▋ | 77/100 [00:49<00:14, 1.54it/s]
78%|███████▊ | 78/100 [00:50<00:14, 1.54it/s]
79%|███████▉ | 79/100 [00:50<00:13, 1.54it/s]
80%|████████ | 80/100 [00:51<00:13, 1.54it/s]
81%|████████ | 81/100 [00:52<00:12, 1.54it/s]
82%|████████▏ | 82/100 [00:52<00:11, 1.54it/s]
83%|████████▎ | 83/100 [00:53<00:11, 1.54it/s]
84%|████████▍ | 84/100 [00:54<00:10, 1.54it/s]
85%|████████▌ | 85/100 [00:54<00:09, 1.54it/s]
86%|████████▌ | 86/100 [00:55<00:09, 1.54it/s]
87%|████████▋ | 87/100 [00:55<00:08, 1.54it/s]
88%|████████▊ | 88/100 [00:56<00:07, 1.54it/s]
89%|████████▉ | 89/100 [00:57<00:07, 1.54it/s]
90%|█████████ | 90/100 [00:57<00:06, 1.54it/s]
91%|█████████ | 91/100 [00:58<00:05, 1.54it/s]
92%|█████████▏| 92/100 [00:59<00:05, 1.54it/s]
93%|█████████▎| 93/100 [00:59<00:04, 1.54it/s]
94%|█████████▍| 94/100 [01:00<00:03, 1.54it/s]
95%|█████████▌| 95/100 [01:01<00:03, 1.53it/s]
96%|█████████▌| 96/100 [01:01<00:02, 1.53it/s]
97%|█████████▋| 97/100 [01:02<00:01, 1.53it/s]
98%|█████████▊| 98/100 [01:03<00:01, 1.53it/s]
99%|█████████▉| 99/100 [01:03<00:00, 1.52it/s]
100%|██████████| 100/100 [01:04<00:00, 1.52it/s]
100%|██████████| 100/100 [01:04<00:00, 1.55it/s]
This example was created by a different version, ai-forever/kandinsky-2:9c0bf7d5.