You're looking at a specific version of this model. Jump to the model overview.
andreasjansson /illusion:75d51a73
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run andreasjansson/illusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"andreasjansson/illusion:75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b",
{
input: {
seed: -1,
image: "https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png",
width: 768,
border: 4,
height: 768,
prompt: "An oil painting of medieval city streets with buildings and trees and people",
num_outputs: 1,
guidance_scale: 7.5,
negative_prompt: "ugly, disfigured, low quality, blurry, nsfw",
qr_code_content: "",
qrcode_background: "white",
num_inference_steps: 40,
controlnet_conditioning_scale: 1
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run andreasjansson/illusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"andreasjansson/illusion:75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b",
input={
"seed": -1,
"image": "https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png",
"width": 768,
"border": 4,
"height": 768,
"prompt": "An oil painting of medieval city streets with buildings and trees and people",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "ugly, disfigured, low quality, blurry, nsfw",
"qr_code_content": "",
"qrcode_background": "white",
"num_inference_steps": 40,
"controlnet_conditioning_scale": 1
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run andreasjansson/illusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b",
"input": {
"seed": -1,
"image": "https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png",
"width": 768,
"border": 4,
"height": 768,
"prompt": "An oil painting of medieval city streets with buildings and trees and people",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "ugly, disfigured, low quality, blurry, nsfw",
"qr_code_content": "",
"qrcode_background": "white",
"num_inference_steps": 40,
"controlnet_conditioning_scale": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/illusion@sha256:75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b \
-i 'seed=-1' \
-i 'image="https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png"' \
-i 'width=768' \
-i 'border=4' \
-i 'height=768' \
-i 'prompt="An oil painting of medieval city streets with buildings and trees and people"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \
-i 'qr_code_content=""' \
-i 'qrcode_background="white"' \
-i 'num_inference_steps=40' \
-i 'controlnet_conditioning_scale=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/illusion@sha256:75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png", "width": 768, "border": 4, "height": 768, "prompt": "An oil painting of medieval city streets with buildings and trees and people", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "", "qrcode_background": "white", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0034. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-23T23:42:42.564603Z",
"created_at": "2023-09-23T23:42:35.790473Z",
"data_removed": false,
"error": null,
"id": "2gwatqdbjd6hno4qtqkk5y26je",
"input": {
"seed": -1,
"image": "https://replicate.delivery/pbxt/Ja3ByHnLrLmMc1uI7z0PZyBdQWdU4eQUoJJvXRMnGQbT9y5o/F6WmkWWacAAcyLe.png",
"width": 768,
"border": 4,
"height": 768,
"prompt": "An oil painting of medieval city streets with buildings and trees and people",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "ugly, disfigured, low quality, blurry, nsfw",
"qr_code_content": "",
"qrcode_background": "white",
"num_inference_steps": 40,
"controlnet_conditioning_scale": 1
},
"logs": "0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:04, 8.43it/s]\n 5%|▌ | 2/40 [00:00<00:04, 8.37it/s]\n 8%|▊ | 3/40 [00:00<00:04, 8.34it/s]\n 10%|█ | 4/40 [00:00<00:04, 8.32it/s]\n 12%|█▎ | 5/40 [00:00<00:04, 8.33it/s]\n 15%|█▌ | 6/40 [00:00<00:04, 8.32it/s]\n 18%|█▊ | 7/40 [00:00<00:03, 8.31it/s]\n 20%|██ | 8/40 [00:00<00:03, 8.30it/s]\n 22%|██▎ | 9/40 [00:01<00:03, 8.30it/s]\n 25%|██▌ | 10/40 [00:01<00:03, 8.30it/s]\n 28%|██▊ | 11/40 [00:01<00:03, 8.30it/s]\n 30%|███ | 12/40 [00:01<00:03, 8.30it/s]\n 32%|███▎ | 13/40 [00:01<00:03, 8.30it/s]\n 35%|███▌ | 14/40 [00:01<00:03, 8.30it/s]\n 38%|███▊ | 15/40 [00:01<00:03, 8.31it/s]\n 40%|████ | 16/40 [00:01<00:02, 8.33it/s]\n 42%|████▎ | 17/40 [00:02<00:02, 8.33it/s]\n 45%|████▌ | 18/40 [00:02<00:02, 8.33it/s]\n 48%|████▊ | 19/40 [00:02<00:02, 8.33it/s]\n 50%|█████ | 20/40 [00:02<00:02, 8.34it/s]\n 52%|█████▎ | 21/40 [00:02<00:02, 8.34it/s]\n 55%|█████▌ | 22/40 [00:02<00:02, 8.34it/s]\n 57%|█████▊ | 23/40 [00:02<00:02, 8.33it/s]\n 60%|██████ | 24/40 [00:02<00:01, 8.34it/s]\n 62%|██████▎ | 25/40 [00:03<00:01, 8.35it/s]\n 65%|██████▌ | 26/40 [00:03<00:01, 8.35it/s]\n 68%|██████▊ | 27/40 [00:03<00:01, 8.35it/s]\n 70%|███████ | 28/40 [00:03<00:01, 8.34it/s]\n 72%|███████▎ | 29/40 [00:03<00:01, 8.35it/s]\n 75%|███████▌ | 30/40 [00:03<00:01, 8.35it/s]\n 78%|███████▊ | 31/40 [00:03<00:01, 8.34it/s]\n 80%|████████ | 32/40 [00:03<00:00, 8.34it/s]\n 82%|████████▎ | 33/40 [00:03<00:00, 8.34it/s]\n 85%|████████▌ | 34/40 [00:04<00:00, 8.34it/s]\n 88%|████████▊ | 35/40 [00:04<00:00, 8.34it/s]\n 90%|█████████ | 36/40 [00:04<00:00, 8.34it/s]\n 92%|█████████▎| 37/40 [00:04<00:00, 8.33it/s]\n 95%|█████████▌| 38/40 [00:04<00:00, 8.32it/s]\n 98%|█████████▊| 39/40 [00:04<00:00, 8.32it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.32it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.33it/s]",
"metrics": {
"predict_time": 6.780116,
"total_time": 6.77413
},
"output": [
"https://replicate.delivery/pbxt/hHJNV9QteKX8DK2ckkUeXsqbEIKNGFXU1fN0MJoizz3iPlOjA/output-0.png"
],
"started_at": "2023-09-23T23:42:35.784487Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/2gwatqdbjd6hno4qtqkk5y26je",
"cancel": "https://api.replicate.com/v1/predictions/2gwatqdbjd6hno4qtqkk5y26je/cancel"
},
"version": "75d51a73fce3c00de31ed9ab4358c73e8fc0f627dc8ce975818e653317cb919b"
}
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:00<00:04, 8.43it/s]
5%|▌ | 2/40 [00:00<00:04, 8.37it/s]
8%|▊ | 3/40 [00:00<00:04, 8.34it/s]
10%|█ | 4/40 [00:00<00:04, 8.32it/s]
12%|█▎ | 5/40 [00:00<00:04, 8.33it/s]
15%|█▌ | 6/40 [00:00<00:04, 8.32it/s]
18%|█▊ | 7/40 [00:00<00:03, 8.31it/s]
20%|██ | 8/40 [00:00<00:03, 8.30it/s]
22%|██▎ | 9/40 [00:01<00:03, 8.30it/s]
25%|██▌ | 10/40 [00:01<00:03, 8.30it/s]
28%|██▊ | 11/40 [00:01<00:03, 8.30it/s]
30%|███ | 12/40 [00:01<00:03, 8.30it/s]
32%|███▎ | 13/40 [00:01<00:03, 8.30it/s]
35%|███▌ | 14/40 [00:01<00:03, 8.30it/s]
38%|███▊ | 15/40 [00:01<00:03, 8.31it/s]
40%|████ | 16/40 [00:01<00:02, 8.33it/s]
42%|████▎ | 17/40 [00:02<00:02, 8.33it/s]
45%|████▌ | 18/40 [00:02<00:02, 8.33it/s]
48%|████▊ | 19/40 [00:02<00:02, 8.33it/s]
50%|█████ | 20/40 [00:02<00:02, 8.34it/s]
52%|█████▎ | 21/40 [00:02<00:02, 8.34it/s]
55%|█████▌ | 22/40 [00:02<00:02, 8.34it/s]
57%|█████▊ | 23/40 [00:02<00:02, 8.33it/s]
60%|██████ | 24/40 [00:02<00:01, 8.34it/s]
62%|██████▎ | 25/40 [00:03<00:01, 8.35it/s]
65%|██████▌ | 26/40 [00:03<00:01, 8.35it/s]
68%|██████▊ | 27/40 [00:03<00:01, 8.35it/s]
70%|███████ | 28/40 [00:03<00:01, 8.34it/s]
72%|███████▎ | 29/40 [00:03<00:01, 8.35it/s]
75%|███████▌ | 30/40 [00:03<00:01, 8.35it/s]
78%|███████▊ | 31/40 [00:03<00:01, 8.34it/s]
80%|████████ | 32/40 [00:03<00:00, 8.34it/s]
82%|████████▎ | 33/40 [00:03<00:00, 8.34it/s]
85%|████████▌ | 34/40 [00:04<00:00, 8.34it/s]
88%|████████▊ | 35/40 [00:04<00:00, 8.34it/s]
90%|█████████ | 36/40 [00:04<00:00, 8.34it/s]
92%|█████████▎| 37/40 [00:04<00:00, 8.33it/s]
95%|█████████▌| 38/40 [00:04<00:00, 8.32it/s]
98%|█████████▊| 39/40 [00:04<00:00, 8.32it/s]
100%|██████████| 40/40 [00:04<00:00, 8.32it/s]
100%|██████████| 40/40 [00:04<00:00, 8.33it/s]