You're looking at a specific version of this model. Jump to the model overview.
andreasjansson /monkey-island-sd:792eb5da
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run andreasjansson/monkey-island-sd using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"andreasjansson/monkey-island-sd:792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76",
{
input: {
prompt: "sea turtles on the beach in maui",
num_outputs: 1,
guidance_scale: 7.5,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run andreasjansson/monkey-island-sd using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"andreasjansson/monkey-island-sd:792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76",
input={
"prompt": "sea turtles on the beach in maui",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run andreasjansson/monkey-island-sd using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "andreasjansson/monkey-island-sd:792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76",
"input": {
"prompt": "sea turtles on the beach in maui",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/monkey-island-sd@sha256:792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76 \
-i 'prompt="sea turtles on the beach in maui"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/monkey-island-sd@sha256:792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "sea turtles on the beach in maui", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0033. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-11-01T21:55:38.534757Z",
"created_at": "2022-11-01T21:55:35.109283Z",
"data_removed": false,
"error": null,
"id": "d7kkwcjfkzhaznfnitjtslsemu",
"input": {
"prompt": "sea turtles on the beach in maui",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
},
"logs": "Using seed: 9984\n\n 0%| | 0/51 [00:00<?, ?it/s]\n 4%|▍ | 2/51 [00:00<00:03, 14.34it/s]\n 8%|▊ | 4/51 [00:00<00:03, 15.31it/s]\n 12%|█▏ | 6/51 [00:00<00:02, 15.64it/s]\n 16%|█▌ | 8/51 [00:00<00:02, 15.90it/s]\n 20%|█▉ | 10/51 [00:00<00:02, 15.94it/s]\n 24%|██▎ | 12/51 [00:00<00:02, 15.97it/s]\n 27%|██▋ | 14/51 [00:00<00:02, 15.98it/s]\n 31%|███▏ | 16/51 [00:01<00:02, 15.89it/s]\n 35%|███▌ | 18/51 [00:01<00:02, 15.93it/s]\n 39%|███▉ | 20/51 [00:01<00:01, 15.91it/s]\n 43%|████▎ | 22/51 [00:01<00:01, 15.96it/s]\n 47%|████▋ | 24/51 [00:01<00:01, 16.03it/s]\n 51%|█████ | 26/51 [00:01<00:01, 16.11it/s]\n 55%|█████▍ | 28/51 [00:01<00:01, 16.13it/s]\n 59%|█████▉ | 30/51 [00:01<00:01, 16.00it/s]\n 63%|██████▎ | 32/51 [00:02<00:01, 16.12it/s]\n 67%|██████▋ | 34/51 [00:02<00:01, 16.21it/s]\n 71%|███████ | 36/51 [00:02<00:00, 16.19it/s]\n 75%|███████▍ | 38/51 [00:02<00:00, 16.24it/s]\n 78%|███████▊ | 40/51 [00:02<00:00, 16.23it/s]\n 82%|████████▏ | 42/51 [00:02<00:00, 16.21it/s]\n 86%|████████▋ | 44/51 [00:02<00:00, 16.26it/s]\n 90%|█████████ | 46/51 [00:02<00:00, 16.26it/s]\n 94%|█████████▍| 48/51 [00:02<00:00, 16.38it/s]\n 98%|█████████▊| 50/51 [00:03<00:00, 16.45it/s]\n100%|██████████| 51/51 [00:03<00:00, 16.10it/s]",
"metrics": {
"predict_time": 3.384878,
"total_time": 3.425474
},
"output": [
"https://replicate.delivery/pbxt/aJPVT6bLWXbsOR4lNsnfeBGts5iAKR4zdTIuQT897wqafo3fA/out-0.png"
],
"started_at": "2022-11-01T21:55:35.149879Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/d7kkwcjfkzhaznfnitjtslsemu",
"cancel": "https://api.replicate.com/v1/predictions/d7kkwcjfkzhaznfnitjtslsemu/cancel"
},
"version": "792eb5dabf5501925c8d2f8394e06fa26cf17255d0499f4cc11212476b59aa76"
}
Using seed: 9984
0%| | 0/51 [00:00<?, ?it/s]
4%|▍ | 2/51 [00:00<00:03, 14.34it/s]
8%|▊ | 4/51 [00:00<00:03, 15.31it/s]
12%|█▏ | 6/51 [00:00<00:02, 15.64it/s]
16%|█▌ | 8/51 [00:00<00:02, 15.90it/s]
20%|█▉ | 10/51 [00:00<00:02, 15.94it/s]
24%|██▎ | 12/51 [00:00<00:02, 15.97it/s]
27%|██▋ | 14/51 [00:00<00:02, 15.98it/s]
31%|███▏ | 16/51 [00:01<00:02, 15.89it/s]
35%|███▌ | 18/51 [00:01<00:02, 15.93it/s]
39%|███▉ | 20/51 [00:01<00:01, 15.91it/s]
43%|████▎ | 22/51 [00:01<00:01, 15.96it/s]
47%|████▋ | 24/51 [00:01<00:01, 16.03it/s]
51%|█████ | 26/51 [00:01<00:01, 16.11it/s]
55%|█████▍ | 28/51 [00:01<00:01, 16.13it/s]
59%|█████▉ | 30/51 [00:01<00:01, 16.00it/s]
63%|██████▎ | 32/51 [00:02<00:01, 16.12it/s]
67%|██████▋ | 34/51 [00:02<00:01, 16.21it/s]
71%|███████ | 36/51 [00:02<00:00, 16.19it/s]
75%|███████▍ | 38/51 [00:02<00:00, 16.24it/s]
78%|███████▊ | 40/51 [00:02<00:00, 16.23it/s]
82%|████████▏ | 42/51 [00:02<00:00, 16.21it/s]
86%|████████▋ | 44/51 [00:02<00:00, 16.26it/s]
90%|█████████ | 46/51 [00:02<00:00, 16.26it/s]
94%|█████████▍| 48/51 [00:02<00:00, 16.38it/s]
98%|█████████▊| 50/51 [00:03<00:00, 16.45it/s]
100%|██████████| 51/51 [00:03<00:00, 16.10it/s]