You're looking at a specific version of this model. Jump to the model overview.
anotherjesse /dogbooth:35b7f2e0
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run anotherjesse/dogbooth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"anotherjesse/dogbooth:35b7f2e003fc1611c44ca016dbfb7e8b3489bcc81b7d7e7580c61d3e7cad803c",
{
input: {
seed: 64596,
width: 512,
height: 512,
prompt: "a velvet painting of dgg playing poker",
scheduler: "DDIM",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run anotherjesse/dogbooth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"anotherjesse/dogbooth:35b7f2e003fc1611c44ca016dbfb7e8b3489bcc81b7d7e7580c61d3e7cad803c",
input={
"seed": 64596,
"width": 512,
"height": 512,
"prompt": "a velvet painting of dgg playing poker",
"scheduler": "DDIM",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run anotherjesse/dogbooth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "35b7f2e003fc1611c44ca016dbfb7e8b3489bcc81b7d7e7580c61d3e7cad803c",
"input": {
"seed": 64596,
"width": 512,
"height": 512,
"prompt": "a velvet painting of dgg playing poker",
"scheduler": "DDIM",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/anotherjesse/dogbooth@sha256:35b7f2e003fc1611c44ca016dbfb7e8b3489bcc81b7d7e7580c61d3e7cad803c \
-i 'seed=64596' \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="a velvet painting of dgg playing poker"' \
-i 'scheduler="DDIM"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/anotherjesse/dogbooth@sha256:35b7f2e003fc1611c44ca016dbfb7e8b3489bcc81b7d7e7580c61d3e7cad803c
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 64596, "width": 512, "height": 512, "prompt": "a velvet painting of dgg playing poker", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-12-13T03:27:47.631709Z",
"created_at": "2022-12-13T03:27:44.383106Z",
"data_removed": false,
"error": null,
"id": "umfdfqshkzaxxl3eaedgnmjyea",
"input": {
"seed": 64596,
"width": "512",
"height": "512",
"prompt": "a velvet painting of dgg playing poker",
"scheduler": "DDIM",
"num_outputs": "1",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 64596\nusing weights: True\n 0%| | 0/50 [00:00<?, ?it/s]\n 4%|▍ | 2/50 [00:00<00:02, 17.81it/s]\n 8%|▊ | 4/50 [00:00<00:02, 17.40it/s]\n 12%|█▏ | 6/50 [00:00<00:02, 17.85it/s]\n 16%|█▌ | 8/50 [00:00<00:02, 17.88it/s]\n 20%|██ | 10/50 [00:00<00:02, 17.75it/s]\n 24%|██▍ | 12/50 [00:00<00:02, 17.88it/s]\n 28%|██▊ | 14/50 [00:00<00:01, 18.10it/s]\n 32%|███▏ | 16/50 [00:00<00:01, 18.25it/s]\n 36%|███▌ | 18/50 [00:00<00:01, 18.35it/s]\n 40%|████ | 20/50 [00:01<00:01, 18.40it/s]\n 44%|████▍ | 22/50 [00:01<00:01, 18.38it/s]\n 48%|████▊ | 24/50 [00:01<00:01, 18.31it/s]\n 52%|█████▏ | 26/50 [00:01<00:01, 18.31it/s]\n 56%|█████▌ | 28/50 [00:01<00:01, 18.32it/s]\n 60%|██████ | 30/50 [00:01<00:01, 18.34it/s]\n 64%|██████▍ | 32/50 [00:01<00:00, 18.48it/s]\n 68%|██████▊ | 34/50 [00:01<00:00, 18.55it/s]\n 72%|███████▏ | 36/50 [00:01<00:00, 18.52it/s]\n 76%|███████▌ | 38/50 [00:02<00:00, 18.58it/s]\n 80%|████████ | 40/50 [00:02<00:00, 18.34it/s]\n 84%|████████▍ | 42/50 [00:02<00:00, 18.46it/s]\n 88%|████████▊ | 44/50 [00:02<00:00, 18.43it/s]\n 92%|█████████▏| 46/50 [00:02<00:00, 18.45it/s]\n 96%|█████████▌| 48/50 [00:02<00:00, 18.37it/s]\n100%|██████████| 50/50 [00:02<00:00, 18.38it/s]\n100%|██████████| 50/50 [00:02<00:00, 18.28it/s]",
"metrics": {
"predict_time": 3.209735,
"total_time": 3.248603
},
"output": [
"https://replicate.delivery/pbxt/lYHXrMvQiO5pKpW4fl82oeHyScJk79EnmKf4SmpmOjCmZ0SgA/out-0.png"
],
"started_at": "2022-12-13T03:27:44.421974Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/umfdfqshkzaxxl3eaedgnmjyea",
"cancel": "https://api.replicate.com/v1/predictions/umfdfqshkzaxxl3eaedgnmjyea/cancel"
},
"version": "61a1f4404240790613bcb098ab5ba7b178124a6a3040739b2b6f2f2d7b8666ea"
}
Using seed: 64596
using weights: True
0%| | 0/50 [00:00<?, ?it/s]
4%|▍ | 2/50 [00:00<00:02, 17.81it/s]
8%|▊ | 4/50 [00:00<00:02, 17.40it/s]
12%|█▏ | 6/50 [00:00<00:02, 17.85it/s]
16%|█▌ | 8/50 [00:00<00:02, 17.88it/s]
20%|██ | 10/50 [00:00<00:02, 17.75it/s]
24%|██▍ | 12/50 [00:00<00:02, 17.88it/s]
28%|██▊ | 14/50 [00:00<00:01, 18.10it/s]
32%|███▏ | 16/50 [00:00<00:01, 18.25it/s]
36%|███▌ | 18/50 [00:00<00:01, 18.35it/s]
40%|████ | 20/50 [00:01<00:01, 18.40it/s]
44%|████▍ | 22/50 [00:01<00:01, 18.38it/s]
48%|████▊ | 24/50 [00:01<00:01, 18.31it/s]
52%|█████▏ | 26/50 [00:01<00:01, 18.31it/s]
56%|█████▌ | 28/50 [00:01<00:01, 18.32it/s]
60%|██████ | 30/50 [00:01<00:01, 18.34it/s]
64%|██████▍ | 32/50 [00:01<00:00, 18.48it/s]
68%|██████▊ | 34/50 [00:01<00:00, 18.55it/s]
72%|███████▏ | 36/50 [00:01<00:00, 18.52it/s]
76%|███████▌ | 38/50 [00:02<00:00, 18.58it/s]
80%|████████ | 40/50 [00:02<00:00, 18.34it/s]
84%|████████▍ | 42/50 [00:02<00:00, 18.46it/s]
88%|████████▊ | 44/50 [00:02<00:00, 18.43it/s]
92%|█████████▏| 46/50 [00:02<00:00, 18.45it/s]
96%|█████████▌| 48/50 [00:02<00:00, 18.37it/s]
100%|██████████| 50/50 [00:02<00:00, 18.38it/s]
100%|██████████| 50/50 [00:02<00:00, 18.28it/s]
This example was created by a different version, anotherjesse/dogbooth:61a1f440.