You're looking at a specific version of this model. Jump to the model overview.
anotherjesse /streaming-sdxl:15320413
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run anotherjesse/streaming-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"anotherjesse/streaming-sdxl:153204130f521e631a916ef067a0c5e09dcb8782bcfd90926b8e73763b161959",
{
input: {
width: 1024,
height: 1024,
prompt: "An astronaut riding a rainbow unicorn",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
preview_size: 256,
preview_steps: 5,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run anotherjesse/streaming-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"anotherjesse/streaming-sdxl:153204130f521e631a916ef067a0c5e09dcb8782bcfd90926b8e73763b161959",
input={
"width": 1024,
"height": 1024,
"prompt": "An astronaut riding a rainbow unicorn",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"preview_size": 256,
"preview_steps": 5,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
# The anotherjesse/streaming-sdxl model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/anotherjesse/streaming-sdxl/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run anotherjesse/streaming-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "153204130f521e631a916ef067a0c5e09dcb8782bcfd90926b8e73763b161959",
"input": {
"width": 1024,
"height": 1024,
"prompt": "An astronaut riding a rainbow unicorn",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"preview_size": 256,
"preview_steps": 5,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/anotherjesse/streaming-sdxl@sha256:153204130f521e631a916ef067a0c5e09dcb8782bcfd90926b8e73763b161959 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="An astronaut riding a rainbow unicorn"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'preview_size=256' \
-i 'preview_steps=5' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/anotherjesse/streaming-sdxl@sha256:153204130f521e631a916ef067a0c5e09dcb8782bcfd90926b8e73763b161959
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "preview_size": 256, "preview_steps": 5, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.014. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-13T22:51:39.972594Z",
"created_at": "2023-09-13T22:51:26.023554Z",
"data_removed": false,
"error": null,
"id": "ezpvhitbro5zgiugi7wzx5kv2y",
"input": {
"width": 1024,
"height": 1024,
"prompt": "An astronaut riding a rainbow unicorn",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"preview_steps": 5,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 36830\nPrompt: An astronaut riding a rainbow unicorn\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\nyielding latents\n 2%|▏ | 1/50 [00:00<00:09, 4.97it/s]\n 4%|▍ | 2/50 [00:00<00:16, 2.85it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.54it/s]\n 8%|▊ | 4/50 [00:01<00:11, 3.99it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.28it/s]\nyielding latents\n 12%|█▏ | 6/50 [00:01<00:09, 4.48it/s]\n 14%|█▍ | 7/50 [00:01<00:12, 3.38it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.76it/s]\n 18%|█▊ | 9/50 [00:02<00:10, 4.07it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.29it/s]\nyielding latents\n 22%|██▏ | 11/50 [00:02<00:08, 4.47it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.46it/s]\n 26%|██▌ | 13/50 [00:03<00:09, 3.80it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.09it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.32it/s]\nyielding latents\n 32%|███▏ | 16/50 [00:03<00:07, 4.45it/s]\n 34%|███▍ | 17/50 [00:04<00:10, 3.29it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 3.96it/s]\n 40%|████ | 20/50 [00:05<00:07, 4.20it/s]\nyielding latents\n 42%|████▏ | 21/50 [00:05<00:06, 4.38it/s]\n 44%|████▍ | 22/50 [00:05<00:08, 3.26it/s]\n 46%|████▌ | 23/50 [00:05<00:07, 3.63it/s]\n 48%|████▊ | 24/50 [00:06<00:06, 3.94it/s]\n 50%|█████ | 25/50 [00:06<00:05, 4.19it/s]\nyielding latents\n 52%|█████▏ | 26/50 [00:06<00:05, 4.38it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.40it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.74it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 4.03it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.26it/s]\nyielding latents\n 62%|██████▏ | 31/50 [00:07<00:04, 4.43it/s]\n 64%|██████▍ | 32/50 [00:08<00:05, 3.45it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.79it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.06it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.28it/s]\nyielding latents\n 72%|███████▏ | 36/50 [00:09<00:03, 4.45it/s]\n 74%|███████▍ | 37/50 [00:09<00:03, 3.43it/s]\n 76%|███████▌ | 38/50 [00:09<00:03, 3.77it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.05it/s]\n 80%|████████ | 40/50 [00:10<00:02, 4.27it/s]\nyielding latents\n 82%|████████▏ | 41/50 [00:10<00:02, 4.44it/s]\n 84%|████████▍ | 42/50 [00:10<00:02, 3.44it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.78it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 4.06it/s]\n 90%|█████████ | 45/50 [00:11<00:01, 4.28it/s]\nyielding latents\n 92%|█████████▏| 46/50 [00:11<00:00, 4.45it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.45it/s]\n 96%|█████████▌| 48/50 [00:12<00:00, 3.79it/s]\n 98%|█████████▊| 49/50 [00:12<00:00, 4.07it/s]\n100%|██████████| 50/50 [00:12<00:00, 4.29it/s]\n100%|██████████| 50/50 [00:12<00:00, 3.94it/s]",
"metrics": {
"predict_time": 13.983038,
"total_time": 13.94904
},
"output": [
"https://pbxt.replicate.delivery/kW8fAcvc6KyKSqXAx2GXY72W7yVRFczm5uPJGHIL8wZ3dfjRA/0000.jpg",
"https://pbxt.replicate.delivery/JZxWZi0P5SZFN5gnFu4Vop20XFGlG4DztdNDCJO8pfw3dfjRA/0005.jpg",
"https://pbxt.replicate.delivery/XSojnlcTcJ5iBNaQ4ftDuC1OQEmeMp4NYFa01eYAFosi39HjA/0010.jpg",
"https://pbxt.replicate.delivery/5JUydfceTosdAkePUmIMcbIVBZYBcigTrWrB2sjsLNDl39HjA/0015.jpg",
"https://pbxt.replicate.delivery/5WIMaXF4XQIFO1uTSvc7tTjsDEQuOeVFXYJqRIrrXPn5dfjRA/0020.jpg",
"https://pbxt.replicate.delivery/g3O1iks3we34MSkOgmBWjAGJsekOzTUeCrTw9bjbaeKXv7PGB/0025.jpg",
"https://pbxt.replicate.delivery/tWRQcYcHIApAERLcG2gn0S5znCfcqtdoOevVbaUJ8ct27eHjA/0030.jpg",
"https://pbxt.replicate.delivery/bzSZnPxdkS7nHZaDT60QXN9GxvNO77z0fXoFi6oH7Bx7dfjRA/0035.jpg",
"https://pbxt.replicate.delivery/ajx1LpNLcH5dPNbe8jFscGijwN0t8afuKgOakBiDCxX47eHjA/0040.jpg",
"https://pbxt.replicate.delivery/a8BBeeGfbZCbnJk8EV2gdNEYPeYE94dWBiJ2KeYC2VZVfufxIA/0045.jpg",
"https://pbxt.replicate.delivery/kht9VnpIDnaBAJa4i2bHAHob7ruWXWDvJTderc7Mzb59dfjRA/results.png"
],
"started_at": "2023-09-13T22:51:25.989556Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ezpvhitbro5zgiugi7wzx5kv2y",
"cancel": "https://api.replicate.com/v1/predictions/ezpvhitbro5zgiugi7wzx5kv2y/cancel"
},
"version": "342f66e96ce05221d91654ab7479593a3e0554004e502d5c3e28cc84fa0b0245"
}
Using seed: 36830
Prompt: An astronaut riding a rainbow unicorn
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
yielding latents
2%|▏ | 1/50 [00:00<00:09, 4.97it/s]
4%|▍ | 2/50 [00:00<00:16, 2.85it/s]
6%|▌ | 3/50 [00:00<00:13, 3.54it/s]
8%|▊ | 4/50 [00:01<00:11, 3.99it/s]
10%|█ | 5/50 [00:01<00:10, 4.28it/s]
yielding latents
12%|█▏ | 6/50 [00:01<00:09, 4.48it/s]
14%|█▍ | 7/50 [00:01<00:12, 3.38it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.76it/s]
18%|█▊ | 9/50 [00:02<00:10, 4.07it/s]
20%|██ | 10/50 [00:02<00:09, 4.29it/s]
yielding latents
22%|██▏ | 11/50 [00:02<00:08, 4.47it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.46it/s]
26%|██▌ | 13/50 [00:03<00:09, 3.80it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.09it/s]
30%|███ | 15/50 [00:03<00:08, 4.32it/s]
yielding latents
32%|███▏ | 16/50 [00:03<00:07, 4.45it/s]
34%|███▍ | 17/50 [00:04<00:10, 3.29it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]
38%|███▊ | 19/50 [00:04<00:07, 3.96it/s]
40%|████ | 20/50 [00:05<00:07, 4.20it/s]
yielding latents
42%|████▏ | 21/50 [00:05<00:06, 4.38it/s]
44%|████▍ | 22/50 [00:05<00:08, 3.26it/s]
46%|████▌ | 23/50 [00:05<00:07, 3.63it/s]
48%|████▊ | 24/50 [00:06<00:06, 3.94it/s]
50%|█████ | 25/50 [00:06<00:05, 4.19it/s]
yielding latents
52%|█████▏ | 26/50 [00:06<00:05, 4.38it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.40it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.74it/s]
58%|█████▊ | 29/50 [00:07<00:05, 4.03it/s]
60%|██████ | 30/50 [00:07<00:04, 4.26it/s]
yielding latents
62%|██████▏ | 31/50 [00:07<00:04, 4.43it/s]
64%|██████▍ | 32/50 [00:08<00:05, 3.45it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.79it/s]
68%|██████▊ | 34/50 [00:08<00:03, 4.06it/s]
70%|███████ | 35/50 [00:08<00:03, 4.28it/s]
yielding latents
72%|███████▏ | 36/50 [00:09<00:03, 4.45it/s]
74%|███████▍ | 37/50 [00:09<00:03, 3.43it/s]
76%|███████▌ | 38/50 [00:09<00:03, 3.77it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.05it/s]
80%|████████ | 40/50 [00:10<00:02, 4.27it/s]
yielding latents
82%|████████▏ | 41/50 [00:10<00:02, 4.44it/s]
84%|████████▍ | 42/50 [00:10<00:02, 3.44it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.78it/s]
88%|████████▊ | 44/50 [00:11<00:01, 4.06it/s]
90%|█████████ | 45/50 [00:11<00:01, 4.28it/s]
yielding latents
92%|█████████▏| 46/50 [00:11<00:00, 4.45it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.45it/s]
96%|█████████▌| 48/50 [00:12<00:00, 3.79it/s]
98%|█████████▊| 49/50 [00:12<00:00, 4.07it/s]
100%|██████████| 50/50 [00:12<00:00, 4.29it/s]
100%|██████████| 50/50 [00:12<00:00, 3.94it/s]
This example was created by a different version, anotherjesse/streaming-sdxl:342f66e9.