You're looking at a specific version of this model. Jump to the model overview.
batouresearch /flux-controlnet-inpaint:e83c4f01
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
Prompt for generated image
|
|
conditioning_scale |
number
|
0.5
Max: 1 |
ControlNet strength, depth works best at 0.2, canny works best at 0.4. Recommended range is 0.3-0.8
|
image |
string
|
The image to restyle
|
|
control_image |
string
|
The image to control the generation
|
|
mask |
string
|
The area to inpaint
|
|
strength |
number
|
0.8
Max: 1 |
Img2Img strength
|
guidance_scale |
number
|
3.5
Max: 30 |
Guidance scale
|
enable_hyper_flux_8_step |
boolean
|
True
|
Whether to use Hyper-FLUX.1-dev-8steps or not. If False, make sure to increase your number of inference steps
|
num_inference_steps |
integer
|
8
Min: 1 Max: 28 |
Number of inference steps
|
seed |
integer
|
Random seed. Set for reproducible generation
|
|
output_format |
string
(enum)
|
jpg
Options: webp, jpg, png |
Format of the output images
|
output_quality |
integer
|
100
Max: 100 |
Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs
|
lora_weights |
string
|
Huggingface path, or URL to the LoRA weights. Ex: alvdansen/frosting_lane_flux
|
|
lora_scale |
number
|
0.8
Max: 1 |
Scale for the LoRA weights
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'items': {'format': 'uri', 'type': 'string'},
'title': 'Output',
'type': 'array'}