You're looking at a specific version of this model. Jump to the model overview.

batouresearch /flux-controlnet-inpaint:e83c4f01

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
Prompt for generated image
conditioning_scale
number
0.5

Max: 1

ControlNet strength, depth works best at 0.2, canny works best at 0.4. Recommended range is 0.3-0.8
image
string
The image to restyle
control_image
string
The image to control the generation
mask
string
The area to inpaint
strength
number
0.8

Max: 1

Img2Img strength
guidance_scale
number
3.5

Max: 30

Guidance scale
enable_hyper_flux_8_step
boolean
True
Whether to use Hyper-FLUX.1-dev-8steps or not. If False, make sure to increase your number of inference steps
num_inference_steps
integer
8

Min: 1

Max: 28

Number of inference steps
seed
integer
Random seed. Set for reproducible generation
output_format
string (enum)
jpg

Options:

webp, jpg, png

Format of the output images
output_quality
integer
100

Max: 100

Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs
lora_weights
string
Huggingface path, or URL to the LoRA weights. Ex: alvdansen/frosting_lane_flux
lora_scale
number
0.8

Max: 1

Scale for the LoRA weights

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}