You're looking at a specific version of this model. Jump to the model overview.
bxclib2 /flux_img2img:0ce45202
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run bxclib2/flux_img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"bxclib2/flux_img2img:0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5",
{
input: {
seed: 0,
image: "https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png",
steps: 20,
denoising: 0.85,
scheduler: "simple",
sampler_name: "euler",
positive_prompt: "disney cartoon style, 3d"
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run bxclib2/flux_img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"bxclib2/flux_img2img:0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5",
input={
"seed": 0,
"image": "https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png",
"steps": 20,
"denoising": 0.85,
"scheduler": "simple",
"sampler_name": "euler",
"positive_prompt": "disney cartoon style, 3d"
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bxclib2/flux_img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "bxclib2/flux_img2img:0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5",
"input": {
"seed": 0,
"image": "https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png",
"steps": 20,
"denoising": 0.85,
"scheduler": "simple",
"sampler_name": "euler",
"positive_prompt": "disney cartoon style, 3d"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/bxclib2/flux_img2img@sha256:0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5 \
-i 'seed=0' \
-i 'image="https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png"' \
-i 'steps=20' \
-i 'denoising=0.85' \
-i 'scheduler="simple"' \
-i 'sampler_name="euler"' \
-i 'positive_prompt="disney cartoon style, 3d"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/bxclib2/flux_img2img@sha256:0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 0, "image": "https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png", "steps": 20, "denoising": 0.85, "scheduler": "simple", "sampler_name": "euler", "positive_prompt": "disney cartoon style, 3d" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.014. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-08-03T15:25:57.924483Z",
"created_at": "2024-08-03T15:25:23.271000Z",
"data_removed": false,
"error": null,
"id": "tmms6tbfrxrgg0ch33ca9ygatg",
"input": {
"seed": 0,
"image": "https://replicate.delivery/pbxt/LNejsmEhVDfW7iRdapoqzUhIyctYDkubGPAJKSruGY3XokjO/1.png",
"steps": 20,
"denoising": 0.85,
"scheduler": "simple",
"sampler_name": "euler",
"positive_prompt": "disney cartoon style, 3d"
},
"logs": "3509132950525580272\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:11, 1.63it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.24it/s]\n 15%|█▌ | 3/20 [00:02<00:14, 1.15it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.11it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.09it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.08it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.07it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.07it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.06it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.06it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.06it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.06it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.06it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.06it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.06it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.06it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.06it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.06it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.06it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.08it/s]",
"metrics": {
"predict_time": 20.348580908,
"total_time": 34.653483
},
"output": "https://replicate.delivery/pbxt/fCW2zC7Bt90ua6PfjQ9NMK1e2iBWWXeR6HyOb1bZC7HVgf3ZC/out.png",
"started_at": "2024-08-03T15:25:37.575902Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/tmms6tbfrxrgg0ch33ca9ygatg",
"cancel": "https://api.replicate.com/v1/predictions/tmms6tbfrxrgg0ch33ca9ygatg/cancel"
},
"version": "0ce45202d83c6bd379dfe58f4c0c41e6cadf93ebbd9d938cc63cc0f2fcb729a5"
}
3509132950525580272
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:11, 1.63it/s]
10%|█ | 2/20 [00:01<00:14, 1.24it/s]
15%|█▌ | 3/20 [00:02<00:14, 1.15it/s]
20%|██ | 4/20 [00:03<00:14, 1.11it/s]
25%|██▌ | 5/20 [00:04<00:13, 1.09it/s]
30%|███ | 6/20 [00:05<00:12, 1.08it/s]
35%|███▌ | 7/20 [00:06<00:12, 1.07it/s]
40%|████ | 8/20 [00:07<00:11, 1.07it/s]
45%|████▌ | 9/20 [00:08<00:10, 1.06it/s]
50%|█████ | 10/20 [00:09<00:09, 1.06it/s]
55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s]
60%|██████ | 12/20 [00:11<00:07, 1.06it/s]
65%|██████▌ | 13/20 [00:11<00:06, 1.06it/s]
70%|███████ | 14/20 [00:12<00:05, 1.06it/s]
75%|███████▌ | 15/20 [00:13<00:04, 1.06it/s]
80%|████████ | 16/20 [00:14<00:03, 1.06it/s]
85%|████████▌ | 17/20 [00:15<00:02, 1.06it/s]
90%|█████████ | 18/20 [00:16<00:01, 1.06it/s]
95%|█████████▌| 19/20 [00:17<00:00, 1.06it/s]
100%|██████████| 20/20 [00:18<00:00, 1.06it/s]
100%|██████████| 20/20 [00:18<00:00, 1.08it/s]