You're looking at a specific version of this model. Jump to the model overview.
carlpuvosx /twittex:1cb56f79
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run carlpuvosx/twittex using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"carlpuvosx/twittex:1cb56f79296da4c9167f745e61cd4601b9ec0e5019a406c9469080b67abe909e",
{
input: {
model: "dev",
prompt: "TOKichatwittex ",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "3:2",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 90,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run carlpuvosx/twittex using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"carlpuvosx/twittex:1cb56f79296da4c9167f745e61cd4601b9ec0e5019a406c9469080b67abe909e",
input={
"model": "dev",
"prompt": "TOKichatwittex ",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "3:2",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run carlpuvosx/twittex using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "1cb56f79296da4c9167f745e61cd4601b9ec0e5019a406c9469080b67abe909e",
"input": {
"model": "dev",
"prompt": "TOKichatwittex ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "3:2",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-09-08T16:03:23.232901Z",
"created_at": "2024-09-08T16:02:49.083000Z",
"data_removed": false,
"error": null,
"id": "drw2gwn4fdrm60cht9ftzrz6bw",
"input": {
"model": "dev",
"prompt": "TOKichatwittex ",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "3:2",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "Using seed: 925\nPrompt: TOKichatwittex\n[!] txt2img mode\nUsing dev model\nfree=8068020023296\nDownloading weights\n2024-09-08T16:03:04Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxm8vb5e2/weights url=https://replicate.delivery/yhqm/Q83XLoAj8LLvFpW9cfaPiNeLoYGHsMYN9Hws2JMfjge3yeWbC/trained_model.tar\n2024-09-08T16:03:06Z | INFO | [ Complete ] dest=/tmp/tmpxm8vb5e2/weights size=\"172 MB\" total_elapsed=2.546s url=https://replicate.delivery/yhqm/Q83XLoAj8LLvFpW9cfaPiNeLoYGHsMYN9Hws2JMfjge3yeWbC/trained_model.tar\nDownloaded weights in 2.58s\nLoaded LoRAs in 11.11s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.84it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.33it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.09it/s]\n 14%|█▍ | 4/28 [00:00<00:06, 3.99it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.93it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.90it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.88it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.87it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.86it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.86it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.85it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.85it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.84it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.84it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.84it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.84it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.84it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.84it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.84it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.84it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.84it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.87it/s]",
"metrics": {
"predict_time": 18.916771506,
"total_time": 34.149901
},
"output": [
"https://replicate.delivery/yhqm/7fX5g1JUx81ekEGfuAHFNEjgnnDRAGpfFMQt81xyfHNey8t2E/out-0.webp"
],
"started_at": "2024-09-08T16:03:04.316130Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/drw2gwn4fdrm60cht9ftzrz6bw",
"cancel": "https://api.replicate.com/v1/predictions/drw2gwn4fdrm60cht9ftzrz6bw/cancel"
},
"version": "1cb56f79296da4c9167f745e61cd4601b9ec0e5019a406c9469080b67abe909e"
}
Using seed: 925
Prompt: TOKichatwittex
[!] txt2img mode
Using dev model
free=8068020023296
Downloading weights
2024-09-08T16:03:04Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxm8vb5e2/weights url=https://replicate.delivery/yhqm/Q83XLoAj8LLvFpW9cfaPiNeLoYGHsMYN9Hws2JMfjge3yeWbC/trained_model.tar
2024-09-08T16:03:06Z | INFO | [ Complete ] dest=/tmp/tmpxm8vb5e2/weights size="172 MB" total_elapsed=2.546s url=https://replicate.delivery/yhqm/Q83XLoAj8LLvFpW9cfaPiNeLoYGHsMYN9Hws2JMfjge3yeWbC/trained_model.tar
Downloaded weights in 2.58s
Loaded LoRAs in 11.11s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.84it/s]
7%|▋ | 2/28 [00:00<00:06, 4.33it/s]
11%|█ | 3/28 [00:00<00:06, 4.09it/s]
14%|█▍ | 4/28 [00:00<00:06, 3.99it/s]
18%|█▊ | 5/28 [00:01<00:05, 3.93it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.90it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.88it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.87it/s]
32%|███▏ | 9/28 [00:02<00:04, 3.86it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.86it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.85it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.85it/s]
46%|████▋ | 13/28 [00:03<00:03, 3.84it/s]
50%|█████ | 14/28 [00:03<00:03, 3.84it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.84it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.84it/s]
61%|██████ | 17/28 [00:04<00:02, 3.84it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]
68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.84it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.84it/s]
82%|████████▏ | 23/28 [00:05<00:01, 3.84it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.84it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s]
96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]
100%|██████████| 28/28 [00:07<00:00, 3.84it/s]
100%|██████████| 28/28 [00:07<00:00, 3.87it/s]