Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cjwbw/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cjwbw/mindall-e:c94a63715097e12c62d3f110fcabb1b70b5c8f5aa04251e116f58a545a47d812",
{
input: {
seed: 0,
prompt: "A painting of a monkey with sunglasses in the frame",
num_samples: 4
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cjwbw/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cjwbw/mindall-e:c94a63715097e12c62d3f110fcabb1b70b5c8f5aa04251e116f58a545a47d812",
input={
"seed": 0,
"prompt": "A painting of a monkey with sunglasses in the frame",
"num_samples": 4
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cjwbw/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cjwbw/mindall-e:c94a63715097e12c62d3f110fcabb1b70b5c8f5aa04251e116f58a545a47d812",
"input": {
"seed": 0,
"prompt": "A painting of a monkey with sunglasses in the frame",
"num_samples": 4
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-08-09T23:07:40.136019Z",
"created_at": "2022-08-09T23:03:31.872891Z",
"data_removed": false,
"error": null,
"id": "ebosqg5hfrh6xdci7liziui5ye",
"input": {
"seed": 0,
"prompt": "A painting of a monkey with sunglasses in the frame",
"num_samples": 4
},
"logs": "\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<02:10, 1.96it/s]\n 1%| | 3/256 [00:00<01:35, 2.64it/s]\n 2%|▏ | 5/256 [00:00<01:12, 3.48it/s]\n 3%|▎ | 7/256 [00:00<00:55, 4.49it/s]\n 4%|▎ | 9/256 [00:01<00:43, 5.62it/s]\n 4%|▍ | 11/256 [00:01<00:42, 5.77it/s]\n 5%|▌ | 13/256 [00:01<00:34, 6.97it/s]\n 6%|▌ | 15/256 [00:01<00:29, 8.14it/s]\n 7%|▋ | 17/256 [00:01<00:25, 9.21it/s]\n 7%|▋ | 19/256 [00:02<00:23, 10.14it/s]\n 8%|▊ | 21/256 [00:02<00:27, 8.62it/s]\n 9%|▉ | 23/256 [00:02<00:24, 9.60it/s]\n 10%|▉ | 25/256 [00:02<00:22, 10.41it/s]\n 11%|█ | 27/256 [00:02<00:20, 11.04it/s]\n 11%|█▏ | 29/256 [00:03<00:25, 9.05it/s]\n 12%|█▏ | 31/256 [00:03<00:22, 9.90it/s]\n 13%|█▎ | 33/256 [00:03<00:21, 10.59it/s]\n 14%|█▎ | 35/256 [00:03<00:25, 8.78it/s]\n 14%|█▍ | 37/256 [00:03<00:22, 9.64it/s]\n 15%|█▌ | 39/256 [00:04<00:21, 10.32it/s]\n 16%|█▌ | 41/256 [00:04<00:24, 8.61it/s]\n 17%|█▋ | 43/256 [00:04<00:22, 9.46it/s]\n 18%|█▊ | 45/256 [00:04<00:20, 10.11it/s]\n 18%|█▊ | 47/256 [00:05<00:24, 8.48it/s]\n 19%|█▉ | 49/256 [00:05<00:22, 9.31it/s]\n 20%|█▉ | 51/256 [00:05<00:20, 9.95it/s]\n 21%|██ | 53/256 [00:05<00:24, 8.33it/s]\n 21%|██▏ | 55/256 [00:05<00:22, 9.13it/s]\n 22%|██▏ | 57/256 [00:06<00:25, 7.86it/s]\n 23%|██▎ | 59/256 [00:06<00:22, 8.71it/s]\n 24%|██▍ | 61/256 [00:06<00:20, 9.41it/s]\n 25%|██▍ | 63/256 [00:06<00:24, 7.97it/s]\n 25%|██▌ | 65/256 [00:07<00:21, 8.73it/s]\n 26%|██▌ | 67/256 [00:07<00:25, 7.48it/s]\n 27%|██▋ | 69/256 [00:07<00:22, 8.32it/s]\n 28%|██▊ | 71/256 [00:07<00:25, 7.38it/s]\n 29%|██▊ | 73/256 [00:08<00:22, 8.23it/s]\n 29%|██▉ | 75/256 [00:08<00:24, 7.38it/s]\n 30%|███ | 77/256 [00:08<00:21, 8.20it/s]\n 31%|███ | 79/256 [00:08<00:23, 7.40it/s]\n 32%|███▏ | 81/256 [00:09<00:21, 8.21it/s]\n 32%|███▏ | 83/256 [00:09<00:23, 7.34it/s]\n 33%|███▎ | 85/256 [00:09<00:21, 8.12it/s]\n 34%|███▍ | 87/256 [00:10<00:23, 7.33it/s]\n 35%|███▍ | 89/256 [00:10<00:20, 8.10it/s]\n 36%|███▌ | 91/256 [00:10<00:22, 7.30it/s]\n 36%|███▋ | 93/256 [00:10<00:20, 8.06it/s]\n 37%|███▋ | 95/256 [00:11<00:22, 7.26it/s]\n 38%|███▊ | 97/256 [00:11<00:19, 8.00it/s]\n 38%|███▊ | 98/256 [00:11<00:24, 6.36it/s]\n 39%|███▉ | 100/256 [00:11<00:21, 7.20it/s]\n 39%|███▉ | 101/256 [00:11<00:26, 5.93it/s]\n 40%|████ | 103/256 [00:12<00:22, 6.79it/s]\n 41%|████ | 104/256 [00:12<00:26, 5.69it/s]\n 41%|████▏ | 106/256 [00:12<00:22, 6.57it/s]\n 42%|████▏ | 107/256 [00:12<00:26, 5.53it/s]\n 43%|████▎ | 109/256 [00:12<00:22, 6.41it/s]\n 43%|████▎ | 110/256 [00:13<00:26, 5.44it/s]\n 44%|████▍ | 112/256 [00:13<00:22, 6.32it/s]\n 44%|████▍ | 113/256 [00:13<00:26, 5.44it/s]\n 45%|████▍ | 115/256 [00:13<00:22, 6.31it/s]\n 45%|████▌ | 116/256 [00:14<00:26, 5.38it/s]\n 46%|████▌ | 117/256 [00:14<00:22, 6.24it/s]\n 46%|████▌ | 118/256 [00:14<00:19, 7.01it/s]\n 46%|████▋ | 119/256 [00:14<00:24, 5.70it/s]\n 47%|████▋ | 120/256 [00:14<00:20, 6.53it/s]\n 47%|████▋ | 121/256 [00:14<00:18, 7.26it/s]\n 48%|████▊ | 122/256 [00:15<00:22, 5.87it/s]\n 48%|████▊ | 123/256 [00:15<00:19, 6.67it/s]\n 48%|████▊ | 124/256 [00:15<00:17, 7.36it/s]\n 49%|████▉ | 125/256 [00:15<00:22, 5.94it/s]\n 49%|████▉ | 126/256 [00:15<00:19, 6.71it/s]\n 50%|████▉ | 127/256 [00:15<00:17, 7.38it/s]\n 50%|█████ | 128/256 [00:15<00:21, 5.90it/s]\n 50%|█████ | 129/256 [00:16<00:19, 6.67it/s]\n 51%|█████ | 130/256 [00:16<00:17, 7.31it/s]\n 51%|█████ | 131/256 [00:16<00:21, 5.83it/s]\n 52%|█████▏ | 132/256 [00:16<00:18, 6.60it/s]\n 52%|█████▏ | 133/256 [00:16<00:16, 7.24it/s]\n 52%|█████▏ | 134/256 [00:16<00:21, 5.80it/s]\n 53%|█████▎ | 135/256 [00:16<00:18, 6.56it/s]\n 53%|█████▎ | 136/256 [00:17<00:21, 5.54it/s]\n 54%|█████▎ | 137/256 [00:17<00:18, 6.32it/s]\n 54%|█████▍ | 138/256 [00:17<00:21, 5.39it/s]\n 54%|█████▍ | 139/256 [00:17<00:18, 6.17it/s]\n 55%|█████▍ | 140/256 [00:17<00:21, 5.31it/s]\n 55%|█████▌ | 141/256 [00:18<00:18, 6.09it/s]\n 55%|█████▌ | 142/256 [00:18<00:22, 5.12it/s]\n 56%|█████▌ | 143/256 [00:18<00:19, 5.92it/s]\n 56%|█████▋ | 144/256 [00:18<00:21, 5.11it/s]\n 57%|█████▋ | 145/256 [00:18<00:18, 5.90it/s]\n 57%|█████▋ | 146/256 [00:19<00:21, 5.09it/s]\n 57%|█████▋ | 147/256 [00:19<00:18, 5.87it/s]\n 58%|█████▊ | 148/256 [00:19<00:21, 5.05it/s]\n 58%|█████▊ | 149/256 [00:19<00:18, 5.82it/s]\n 59%|█████▊ | 150/256 [00:19<00:21, 5.03it/s]\n 59%|█████▉ | 151/256 [00:19<00:18, 5.80it/s]\n 59%|█████▉ | 152/256 [00:20<00:20, 5.00it/s]\n 60%|█████▉ | 153/256 [00:20<00:17, 5.77it/s]\n 60%|██████ | 154/256 [00:20<00:20, 4.99it/s]\n 61%|██████ | 155/256 [00:20<00:17, 5.76it/s]\n 61%|██████ | 156/256 [00:20<00:20, 4.96it/s]\n 61%|██████▏ | 157/256 [00:21<00:17, 5.73it/s]\n 62%|██████▏ | 158/256 [00:21<00:19, 4.94it/s]\n 62%|██████▏ | 159/256 [00:21<00:17, 5.70it/s]\n 62%|██████▎ | 160/256 [00:21<00:19, 4.92it/s]\n 63%|██████▎ | 161/256 [00:21<00:16, 5.68it/s]\n 63%|██████▎ | 162/256 [00:22<00:19, 4.90it/s]\n 64%|██████▎ | 163/256 [00:22<00:16, 5.66it/s]\n 64%|██████▍ | 164/256 [00:22<00:18, 4.89it/s]\n 64%|██████▍ | 165/256 [00:22<00:16, 5.64it/s]\n 65%|██████▍ | 166/256 [00:22<00:18, 4.88it/s]\n 65%|██████▌ | 167/256 [00:22<00:15, 5.60it/s]\n 66%|██████▌ | 168/256 [00:23<00:17, 5.04it/s]\n 66%|██████▌ | 169/256 [00:23<00:15, 5.75it/s]\n 66%|██████▋ | 170/256 [00:23<00:16, 5.11it/s]\n 67%|██████▋ | 171/256 [00:23<00:14, 5.81it/s]\n 67%|██████▋ | 172/256 [00:23<00:16, 5.15it/s]\n 68%|██████▊ | 173/256 [00:24<00:14, 5.83it/s]\n 68%|██████▊ | 174/256 [00:24<00:15, 5.15it/s]\n 68%|██████▊ | 175/256 [00:24<00:13, 5.83it/s]\n 69%|██████▉ | 176/256 [00:24<00:15, 5.15it/s]\n 69%|██████▉ | 177/256 [00:24<00:13, 5.82it/s]\n 70%|██████▉ | 178/256 [00:25<00:15, 5.13it/s]\n 70%|██████▉ | 179/256 [00:25<00:16, 4.78it/s]\n 70%|███████ | 180/256 [00:25<00:16, 4.57it/s]\n 71%|███████ | 181/256 [00:25<00:16, 4.42it/s]\n 71%|███████ | 182/256 [00:25<00:17, 4.33it/s]\n 71%|███████▏ | 183/256 [00:26<00:17, 4.27it/s]\n 72%|███████▏ | 184/256 [00:26<00:17, 4.23it/s]\n 72%|███████▏ | 185/256 [00:26<00:16, 4.18it/s]\n 73%|███████▎ | 186/256 [00:26<00:16, 4.13it/s]\n 73%|███████▎ | 187/256 [00:27<00:16, 4.11it/s]\n 73%|███████▎ | 188/256 [00:27<00:16, 4.08it/s]\n 74%|███████▍ | 189/256 [00:27<00:13, 4.80it/s]\n 74%|███████▍ | 190/256 [00:27<00:15, 4.33it/s]\n 75%|███████▍ | 191/256 [00:28<00:15, 4.28it/s]\n 75%|███████▌ | 192/256 [00:28<00:15, 4.25it/s]\n 75%|███████▌ | 193/256 [00:28<00:14, 4.22it/s]\n 76%|███████▌ | 194/256 [00:28<00:14, 4.19it/s]\n 76%|███████▌ | 195/256 [00:29<00:14, 4.17it/s]\n 77%|███████▋ | 196/256 [00:29<00:14, 4.15it/s]\n 77%|███████▋ | 197/256 [00:29<00:14, 4.13it/s]\n 77%|███████▋ | 198/256 [00:29<00:14, 4.11it/s]\n 78%|███████▊ | 199/256 [00:30<00:13, 4.10it/s]\n 78%|███████▊ | 200/256 [00:30<00:13, 4.09it/s]\n 79%|███████▊ | 201/256 [00:30<00:13, 4.08it/s]\n 79%|███████▉ | 202/256 [00:30<00:13, 4.07it/s]\n 79%|███████▉ | 203/256 [00:31<00:13, 4.05it/s]\n 80%|███████▉ | 204/256 [00:31<00:12, 4.04it/s]\n 80%|████████ | 205/256 [00:31<00:12, 4.03it/s]\n 80%|████████ | 206/256 [00:31<00:12, 4.02it/s]\n 81%|████████ | 207/256 [00:32<00:12, 4.02it/s]\n 81%|████████▏ | 208/256 [00:32<00:11, 4.01it/s]\n 82%|████████▏ | 209/256 [00:32<00:11, 4.00it/s]\n 82%|████████▏ | 210/256 [00:32<00:11, 4.00it/s]\n 82%|████████▏ | 211/256 [00:33<00:11, 4.00it/s]\n 83%|████████▎ | 212/256 [00:33<00:11, 3.98it/s]\n 83%|████████▎ | 213/256 [00:33<00:10, 3.95it/s]\n 84%|████████▎ | 214/256 [00:33<00:10, 3.94it/s]\n 84%|████████▍ | 215/256 [00:34<00:10, 3.90it/s]\n 84%|████████▍ | 216/256 [00:34<00:10, 3.90it/s]\n 85%|████████▍ | 217/256 [00:34<00:10, 3.89it/s]\n 85%|████████▌ | 218/256 [00:34<00:09, 3.87it/s]\n 86%|████████▌ | 219/256 [00:35<00:09, 3.86it/s]\n 86%|████████▌ | 220/256 [00:35<00:09, 3.85it/s]\n 86%|████████▋ | 221/256 [00:35<00:09, 3.84it/s]\n 87%|████████▋ | 222/256 [00:35<00:08, 3.84it/s]\n 87%|████████▋ | 223/256 [00:36<00:08, 3.84it/s]\n 88%|████████▊ | 224/256 [00:36<00:08, 3.83it/s]\n 88%|████████▊ | 225/256 [00:36<00:08, 3.82it/s]\n 88%|████████▊ | 226/256 [00:36<00:07, 3.81it/s]\n 89%|████████▊ | 227/256 [00:37<00:07, 3.80it/s]\n 89%|████████▉ | 228/256 [00:37<00:07, 3.80it/s]\n 89%|████████▉ | 229/256 [00:37<00:07, 3.79it/s]\n 90%|████████▉ | 230/256 [00:37<00:06, 3.79it/s]\n 90%|█████████ | 231/256 [00:38<00:06, 3.78it/s]\n 91%|█████████ | 232/256 [00:38<00:06, 3.78it/s]\n 91%|█████████ | 233/256 [00:38<00:06, 3.75it/s]\n 91%|█████████▏| 234/256 [00:39<00:05, 3.73it/s]\n 92%|█████████▏| 235/256 [00:39<00:05, 3.73it/s]\n 92%|█████████▏| 236/256 [00:39<00:05, 3.73it/s]\n 93%|█████████▎| 237/256 [00:39<00:05, 3.71it/s]\n 93%|█████████▎| 238/256 [00:40<00:04, 3.70it/s]\n 93%|█████████▎| 239/256 [00:40<00:04, 3.70it/s]\n 94%|█████████▍| 240/256 [00:40<00:04, 3.70it/s]\n 94%|█████████▍| 241/256 [00:40<00:04, 3.69it/s]\n 95%|█████████▍| 242/256 [00:41<00:03, 3.68it/s]\n 95%|█████████▍| 243/256 [00:41<00:03, 3.66it/s]\n 95%|█████████▌| 244/256 [00:41<00:03, 3.65it/s]\n 96%|█████████▌| 245/256 [00:42<00:03, 3.64it/s]\n 96%|█████████▌| 246/256 [00:42<00:02, 3.64it/s]\n 96%|█████████▋| 247/256 [00:42<00:02, 3.63it/s]\n 97%|█████████▋| 248/256 [00:42<00:02, 3.63it/s]\n 97%|█████████▋| 249/256 [00:43<00:01, 3.63it/s]\n 98%|█████████▊| 250/256 [00:43<00:01, 3.63it/s]\n 98%|█████████▊| 251/256 [00:43<00:01, 3.62it/s]\n 98%|█████████▊| 252/256 [00:43<00:01, 3.61it/s]\n 99%|█████████▉| 253/256 [00:44<00:00, 3.61it/s]\n 99%|█████████▉| 254/256 [00:44<00:00, 3.61it/s]\n100%|█████████▉| 255/256 [00:44<00:00, 3.59it/s]\n100%|██████████| 256/256 [00:45<00:00, 3.59it/s]\n100%|██████████| 256/256 [00:45<00:00, 5.67it/s]\n<class 'numpy.ndarray'>",
"metrics": {
"predict_time": 50.190088,
"total_time": 248.263128
},
"output": [
{
"image": "https://replicate.delivery/mgxm/f97d6e3f-667e-408f-84d1-c096b3639c54/output_0.png"
},
{
"image": "https://replicate.delivery/mgxm/ef5c3a1d-3777-474b-826c-4d987af916e9/output_1.png"
},
{
"image": "https://replicate.delivery/mgxm/6d4f8de9-3fd7-4e7d-992a-2c2f47820bc4/output_2.png"
},
{
"image": "https://replicate.delivery/mgxm/d514f01d-7386-41d3-b330-af415d01025c/output_3.png"
}
],
"started_at": "2022-08-09T23:06:49.945931Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ebosqg5hfrh6xdci7liziui5ye",
"cancel": "https://api.replicate.com/v1/predictions/ebosqg5hfrh6xdci7liziui5ye/cancel"
},
"version": "c94a63715097e12c62d3f110fcabb1b70b5c8f5aa04251e116f58a545a47d812"
}
0%| | 0/256 [00:00<?, ?it/s]
0%| | 1/256 [00:00<02:10, 1.96it/s]
1%| | 3/256 [00:00<01:35, 2.64it/s]
2%|▏ | 5/256 [00:00<01:12, 3.48it/s]
3%|▎ | 7/256 [00:00<00:55, 4.49it/s]
4%|▎ | 9/256 [00:01<00:43, 5.62it/s]
4%|▍ | 11/256 [00:01<00:42, 5.77it/s]
5%|▌ | 13/256 [00:01<00:34, 6.97it/s]
6%|▌ | 15/256 [00:01<00:29, 8.14it/s]
7%|▋ | 17/256 [00:01<00:25, 9.21it/s]
7%|▋ | 19/256 [00:02<00:23, 10.14it/s]
8%|▊ | 21/256 [00:02<00:27, 8.62it/s]
9%|▉ | 23/256 [00:02<00:24, 9.60it/s]
10%|▉ | 25/256 [00:02<00:22, 10.41it/s]
11%|█ | 27/256 [00:02<00:20, 11.04it/s]
11%|█▏ | 29/256 [00:03<00:25, 9.05it/s]
12%|█▏ | 31/256 [00:03<00:22, 9.90it/s]
13%|█▎ | 33/256 [00:03<00:21, 10.59it/s]
14%|█▎ | 35/256 [00:03<00:25, 8.78it/s]
14%|█▍ | 37/256 [00:03<00:22, 9.64it/s]
15%|█▌ | 39/256 [00:04<00:21, 10.32it/s]
16%|█▌ | 41/256 [00:04<00:24, 8.61it/s]
17%|█▋ | 43/256 [00:04<00:22, 9.46it/s]
18%|█▊ | 45/256 [00:04<00:20, 10.11it/s]
18%|█▊ | 47/256 [00:05<00:24, 8.48it/s]
19%|█▉ | 49/256 [00:05<00:22, 9.31it/s]
20%|█▉ | 51/256 [00:05<00:20, 9.95it/s]
21%|██ | 53/256 [00:05<00:24, 8.33it/s]
21%|██▏ | 55/256 [00:05<00:22, 9.13it/s]
22%|██▏ | 57/256 [00:06<00:25, 7.86it/s]
23%|██▎ | 59/256 [00:06<00:22, 8.71it/s]
24%|██▍ | 61/256 [00:06<00:20, 9.41it/s]
25%|██▍ | 63/256 [00:06<00:24, 7.97it/s]
25%|██▌ | 65/256 [00:07<00:21, 8.73it/s]
26%|██▌ | 67/256 [00:07<00:25, 7.48it/s]
27%|██▋ | 69/256 [00:07<00:22, 8.32it/s]
28%|██▊ | 71/256 [00:07<00:25, 7.38it/s]
29%|██▊ | 73/256 [00:08<00:22, 8.23it/s]
29%|██▉ | 75/256 [00:08<00:24, 7.38it/s]
30%|███ | 77/256 [00:08<00:21, 8.20it/s]
31%|███ | 79/256 [00:08<00:23, 7.40it/s]
32%|███▏ | 81/256 [00:09<00:21, 8.21it/s]
32%|███▏ | 83/256 [00:09<00:23, 7.34it/s]
33%|███▎ | 85/256 [00:09<00:21, 8.12it/s]
34%|███▍ | 87/256 [00:10<00:23, 7.33it/s]
35%|███▍ | 89/256 [00:10<00:20, 8.10it/s]
36%|███▌ | 91/256 [00:10<00:22, 7.30it/s]
36%|███▋ | 93/256 [00:10<00:20, 8.06it/s]
37%|███▋ | 95/256 [00:11<00:22, 7.26it/s]
38%|███▊ | 97/256 [00:11<00:19, 8.00it/s]
38%|███▊ | 98/256 [00:11<00:24, 6.36it/s]
39%|███▉ | 100/256 [00:11<00:21, 7.20it/s]
39%|███▉ | 101/256 [00:11<00:26, 5.93it/s]
40%|████ | 103/256 [00:12<00:22, 6.79it/s]
41%|████ | 104/256 [00:12<00:26, 5.69it/s]
41%|████▏ | 106/256 [00:12<00:22, 6.57it/s]
42%|████▏ | 107/256 [00:12<00:26, 5.53it/s]
43%|████▎ | 109/256 [00:12<00:22, 6.41it/s]
43%|████▎ | 110/256 [00:13<00:26, 5.44it/s]
44%|████▍ | 112/256 [00:13<00:22, 6.32it/s]
44%|████▍ | 113/256 [00:13<00:26, 5.44it/s]
45%|████▍ | 115/256 [00:13<00:22, 6.31it/s]
45%|████▌ | 116/256 [00:14<00:26, 5.38it/s]
46%|████▌ | 117/256 [00:14<00:22, 6.24it/s]
46%|████▌ | 118/256 [00:14<00:19, 7.01it/s]
46%|████▋ | 119/256 [00:14<00:24, 5.70it/s]
47%|████▋ | 120/256 [00:14<00:20, 6.53it/s]
47%|████▋ | 121/256 [00:14<00:18, 7.26it/s]
48%|████▊ | 122/256 [00:15<00:22, 5.87it/s]
48%|████▊ | 123/256 [00:15<00:19, 6.67it/s]
48%|████▊ | 124/256 [00:15<00:17, 7.36it/s]
49%|████▉ | 125/256 [00:15<00:22, 5.94it/s]
49%|████▉ | 126/256 [00:15<00:19, 6.71it/s]
50%|████▉ | 127/256 [00:15<00:17, 7.38it/s]
50%|█████ | 128/256 [00:15<00:21, 5.90it/s]
50%|█████ | 129/256 [00:16<00:19, 6.67it/s]
51%|█████ | 130/256 [00:16<00:17, 7.31it/s]
51%|█████ | 131/256 [00:16<00:21, 5.83it/s]
52%|█████▏ | 132/256 [00:16<00:18, 6.60it/s]
52%|█████▏ | 133/256 [00:16<00:16, 7.24it/s]
52%|█████▏ | 134/256 [00:16<00:21, 5.80it/s]
53%|█████▎ | 135/256 [00:16<00:18, 6.56it/s]
53%|█████▎ | 136/256 [00:17<00:21, 5.54it/s]
54%|█████▎ | 137/256 [00:17<00:18, 6.32it/s]
54%|█████▍ | 138/256 [00:17<00:21, 5.39it/s]
54%|█████▍ | 139/256 [00:17<00:18, 6.17it/s]
55%|█████▍ | 140/256 [00:17<00:21, 5.31it/s]
55%|█████▌ | 141/256 [00:18<00:18, 6.09it/s]
55%|█████▌ | 142/256 [00:18<00:22, 5.12it/s]
56%|█████▌ | 143/256 [00:18<00:19, 5.92it/s]
56%|█████▋ | 144/256 [00:18<00:21, 5.11it/s]
57%|█████▋ | 145/256 [00:18<00:18, 5.90it/s]
57%|█████▋ | 146/256 [00:19<00:21, 5.09it/s]
57%|█████▋ | 147/256 [00:19<00:18, 5.87it/s]
58%|█████▊ | 148/256 [00:19<00:21, 5.05it/s]
58%|█████▊ | 149/256 [00:19<00:18, 5.82it/s]
59%|█████▊ | 150/256 [00:19<00:21, 5.03it/s]
59%|█████▉ | 151/256 [00:19<00:18, 5.80it/s]
59%|█████▉ | 152/256 [00:20<00:20, 5.00it/s]
60%|█████▉ | 153/256 [00:20<00:17, 5.77it/s]
60%|██████ | 154/256 [00:20<00:20, 4.99it/s]
61%|██████ | 155/256 [00:20<00:17, 5.76it/s]
61%|██████ | 156/256 [00:20<00:20, 4.96it/s]
61%|██████▏ | 157/256 [00:21<00:17, 5.73it/s]
62%|██████▏ | 158/256 [00:21<00:19, 4.94it/s]
62%|██████▏ | 159/256 [00:21<00:17, 5.70it/s]
62%|██████▎ | 160/256 [00:21<00:19, 4.92it/s]
63%|██████▎ | 161/256 [00:21<00:16, 5.68it/s]
63%|██████▎ | 162/256 [00:22<00:19, 4.90it/s]
64%|██████▎ | 163/256 [00:22<00:16, 5.66it/s]
64%|██████▍ | 164/256 [00:22<00:18, 4.89it/s]
64%|██████▍ | 165/256 [00:22<00:16, 5.64it/s]
65%|██████▍ | 166/256 [00:22<00:18, 4.88it/s]
65%|██████▌ | 167/256 [00:22<00:15, 5.60it/s]
66%|██████▌ | 168/256 [00:23<00:17, 5.04it/s]
66%|██████▌ | 169/256 [00:23<00:15, 5.75it/s]
66%|██████▋ | 170/256 [00:23<00:16, 5.11it/s]
67%|██████▋ | 171/256 [00:23<00:14, 5.81it/s]
67%|██████▋ | 172/256 [00:23<00:16, 5.15it/s]
68%|██████▊ | 173/256 [00:24<00:14, 5.83it/s]
68%|██████▊ | 174/256 [00:24<00:15, 5.15it/s]
68%|██████▊ | 175/256 [00:24<00:13, 5.83it/s]
69%|██████▉ | 176/256 [00:24<00:15, 5.15it/s]
69%|██████▉ | 177/256 [00:24<00:13, 5.82it/s]
70%|██████▉ | 178/256 [00:25<00:15, 5.13it/s]
70%|██████▉ | 179/256 [00:25<00:16, 4.78it/s]
70%|███████ | 180/256 [00:25<00:16, 4.57it/s]
71%|███████ | 181/256 [00:25<00:16, 4.42it/s]
71%|███████ | 182/256 [00:25<00:17, 4.33it/s]
71%|███████▏ | 183/256 [00:26<00:17, 4.27it/s]
72%|███████▏ | 184/256 [00:26<00:17, 4.23it/s]
72%|███████▏ | 185/256 [00:26<00:16, 4.18it/s]
73%|███████▎ | 186/256 [00:26<00:16, 4.13it/s]
73%|███████▎ | 187/256 [00:27<00:16, 4.11it/s]
73%|███████▎ | 188/256 [00:27<00:16, 4.08it/s]
74%|███████▍ | 189/256 [00:27<00:13, 4.80it/s]
74%|███████▍ | 190/256 [00:27<00:15, 4.33it/s]
75%|███████▍ | 191/256 [00:28<00:15, 4.28it/s]
75%|███████▌ | 192/256 [00:28<00:15, 4.25it/s]
75%|███████▌ | 193/256 [00:28<00:14, 4.22it/s]
76%|███████▌ | 194/256 [00:28<00:14, 4.19it/s]
76%|███████▌ | 195/256 [00:29<00:14, 4.17it/s]
77%|███████▋ | 196/256 [00:29<00:14, 4.15it/s]
77%|███████▋ | 197/256 [00:29<00:14, 4.13it/s]
77%|███████▋ | 198/256 [00:29<00:14, 4.11it/s]
78%|███████▊ | 199/256 [00:30<00:13, 4.10it/s]
78%|███████▊ | 200/256 [00:30<00:13, 4.09it/s]
79%|███████▊ | 201/256 [00:30<00:13, 4.08it/s]
79%|███████▉ | 202/256 [00:30<00:13, 4.07it/s]
79%|███████▉ | 203/256 [00:31<00:13, 4.05it/s]
80%|███████▉ | 204/256 [00:31<00:12, 4.04it/s]
80%|████████ | 205/256 [00:31<00:12, 4.03it/s]
80%|████████ | 206/256 [00:31<00:12, 4.02it/s]
81%|████████ | 207/256 [00:32<00:12, 4.02it/s]
81%|████████▏ | 208/256 [00:32<00:11, 4.01it/s]
82%|████████▏ | 209/256 [00:32<00:11, 4.00it/s]
82%|████████▏ | 210/256 [00:32<00:11, 4.00it/s]
82%|████████▏ | 211/256 [00:33<00:11, 4.00it/s]
83%|████████▎ | 212/256 [00:33<00:11, 3.98it/s]
83%|████████▎ | 213/256 [00:33<00:10, 3.95it/s]
84%|████████▎ | 214/256 [00:33<00:10, 3.94it/s]
84%|████████▍ | 215/256 [00:34<00:10, 3.90it/s]
84%|████████▍ | 216/256 [00:34<00:10, 3.90it/s]
85%|████████▍ | 217/256 [00:34<00:10, 3.89it/s]
85%|████████▌ | 218/256 [00:34<00:09, 3.87it/s]
86%|████████▌ | 219/256 [00:35<00:09, 3.86it/s]
86%|████████▌ | 220/256 [00:35<00:09, 3.85it/s]
86%|████████▋ | 221/256 [00:35<00:09, 3.84it/s]
87%|████████▋ | 222/256 [00:35<00:08, 3.84it/s]
87%|████████▋ | 223/256 [00:36<00:08, 3.84it/s]
88%|████████▊ | 224/256 [00:36<00:08, 3.83it/s]
88%|████████▊ | 225/256 [00:36<00:08, 3.82it/s]
88%|████████▊ | 226/256 [00:36<00:07, 3.81it/s]
89%|████████▊ | 227/256 [00:37<00:07, 3.80it/s]
89%|████████▉ | 228/256 [00:37<00:07, 3.80it/s]
89%|████████▉ | 229/256 [00:37<00:07, 3.79it/s]
90%|████████▉ | 230/256 [00:37<00:06, 3.79it/s]
90%|█████████ | 231/256 [00:38<00:06, 3.78it/s]
91%|█████████ | 232/256 [00:38<00:06, 3.78it/s]
91%|█████████ | 233/256 [00:38<00:06, 3.75it/s]
91%|█████████▏| 234/256 [00:39<00:05, 3.73it/s]
92%|█████████▏| 235/256 [00:39<00:05, 3.73it/s]
92%|█████████▏| 236/256 [00:39<00:05, 3.73it/s]
93%|█████████▎| 237/256 [00:39<00:05, 3.71it/s]
93%|█████████▎| 238/256 [00:40<00:04, 3.70it/s]
93%|█████████▎| 239/256 [00:40<00:04, 3.70it/s]
94%|█████████▍| 240/256 [00:40<00:04, 3.70it/s]
94%|█████████▍| 241/256 [00:40<00:04, 3.69it/s]
95%|█████████▍| 242/256 [00:41<00:03, 3.68it/s]
95%|█████████▍| 243/256 [00:41<00:03, 3.66it/s]
95%|█████████▌| 244/256 [00:41<00:03, 3.65it/s]
96%|█████████▌| 245/256 [00:42<00:03, 3.64it/s]
96%|█████████▌| 246/256 [00:42<00:02, 3.64it/s]
96%|█████████▋| 247/256 [00:42<00:02, 3.63it/s]
97%|█████████▋| 248/256 [00:42<00:02, 3.63it/s]
97%|█████████▋| 249/256 [00:43<00:01, 3.63it/s]
98%|█████████▊| 250/256 [00:43<00:01, 3.63it/s]
98%|█████████▊| 251/256 [00:43<00:01, 3.62it/s]
98%|█████████▊| 252/256 [00:43<00:01, 3.61it/s]
99%|█████████▉| 253/256 [00:44<00:00, 3.61it/s]
99%|█████████▉| 254/256 [00:44<00:00, 3.61it/s]
100%|█████████▉| 255/256 [00:44<00:00, 3.59it/s]
100%|██████████| 256/256 [00:45<00:00, 3.59it/s]
100%|██████████| 256/256 [00:45<00:00, 5.67it/s]
<class 'numpy.ndarray'>