Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c",
{
input: {
model: "dev",
prompt: "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 0.8,
num_inference_steps: 40
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c",
input={
"model": "dev",
"prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 40
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c",
"input": {
"model": "dev",
"prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 40
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-09-04T13:28:48.849490Z",
"created_at": "2024-09-04T13:27:30.417000Z",
"data_removed": false,
"error": null,
"id": "w3ynmgr3e5rm20chqmw90sy4w0",
"input": {
"model": "dev",
"prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting",
"lora_scale": 1,
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 40
},
"logs": "Using seed: 23147\nPrompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting\ntxt2img mode\nUsing dev model\nfree=9422393511936\nDownloading weights\n2024-09-04T13:27:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpczni2c48/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\n2024-09-04T13:27:47Z | INFO | [ Complete ] dest=/tmp/tmpczni2c48/weights size=\"172 MB\" total_elapsed=3.448s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\nDownloaded weights in 3.48s\nLoaded LoRAs in 21.58s\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:01<00:40, 1.05s/it]\n 5%|▌ | 2/40 [00:01<00:35, 1.08it/s]\n 8%|▊ | 3/40 [00:02<00:36, 1.02it/s]\n 10%|█ | 4/40 [00:03<00:36, 1.01s/it]\n 12%|█▎ | 5/40 [00:05<00:35, 1.02s/it]\n 15%|█▌ | 6/40 [00:06<00:35, 1.03s/it]\n 18%|█▊ | 7/40 [00:07<00:34, 1.04s/it]\n 20%|██ | 8/40 [00:08<00:33, 1.05s/it]\n 22%|██▎ | 9/40 [00:09<00:32, 1.05s/it]\n 25%|██▌ | 10/40 [00:10<00:31, 1.05s/it]\n 28%|██▊ | 11/40 [00:11<00:30, 1.05s/it]\n 30%|███ | 12/40 [00:12<00:29, 1.05s/it]\n 32%|███▎ | 13/40 [00:13<00:28, 1.05s/it]\n 35%|███▌ | 14/40 [00:14<00:27, 1.05s/it]\n 38%|███▊ | 15/40 [00:15<00:26, 1.05s/it]\n 40%|████ | 16/40 [00:16<00:25, 1.06s/it]\n 42%|████▎ | 17/40 [00:17<00:24, 1.06s/it]\n 45%|████▌ | 18/40 [00:18<00:23, 1.06s/it]\n 48%|████▊ | 19/40 [00:19<00:22, 1.06s/it]\n 50%|█████ | 20/40 [00:20<00:21, 1.06s/it]\n 52%|█████▎ | 21/40 [00:21<00:20, 1.06s/it]\n 55%|█████▌ | 22/40 [00:22<00:19, 1.06s/it]\n 57%|█████▊ | 23/40 [00:24<00:17, 1.06s/it]\n 60%|██████ | 24/40 [00:25<00:16, 1.06s/it]\n 62%|██████▎ | 25/40 [00:26<00:15, 1.06s/it]\n 65%|██████▌ | 26/40 [00:27<00:14, 1.06s/it]\n 68%|██████▊ | 27/40 [00:28<00:13, 1.05s/it]\n 70%|███████ | 28/40 [00:29<00:12, 1.06s/it]\n 72%|███████▎ | 29/40 [00:30<00:11, 1.06s/it]\n 75%|███████▌ | 30/40 [00:31<00:10, 1.06s/it]\n 78%|███████▊ | 31/40 [00:32<00:09, 1.06s/it]\n 80%|████████ | 32/40 [00:33<00:08, 1.06s/it]\n 82%|████████▎ | 33/40 [00:34<00:07, 1.06s/it]\n 85%|████████▌ | 34/40 [00:35<00:06, 1.06s/it]\n 88%|████████▊ | 35/40 [00:36<00:05, 1.06s/it]\n 90%|█████████ | 36/40 [00:37<00:04, 1.05s/it]\n 92%|█████████▎| 37/40 [00:38<00:03, 1.05s/it]\n 95%|█████████▌| 38/40 [00:39<00:02, 1.06s/it]\n 98%|█████████▊| 39/40 [00:40<00:01, 1.06s/it]\n100%|██████████| 40/40 [00:42<00:00, 1.06s/it]\n100%|██████████| 40/40 [00:42<00:00, 1.05s/it]",
"metrics": {
"predict_time": 65.287233998,
"total_time": 78.43249
},
"output": [
"https://replicate.delivery/yhqm/yL7DZEAzrR4APhwekfYSNf7JFZGuNY1qgRePzYwAtTdBpEmNB/out-0.webp",
"https://replicate.delivery/yhqm/RGAwh9KkpN7HIBznC6zo2sJm6YZc58VB7KDiZGxbRXGkSY2E/out-1.webp",
"https://replicate.delivery/yhqm/YAU6JhXoG5ZaBBoee6LerhiUsMrLSngtTq4wcPIemseGSJMbC/out-2.webp",
"https://replicate.delivery/yhqm/vPzArv8C3ZbxG5602a0zUMIhgI2h3gngzYlszs0C2IPkSY2E/out-3.webp"
],
"started_at": "2024-09-04T13:27:43.562256Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/w3ynmgr3e5rm20chqmw90sy4w0",
"cancel": "https://api.replicate.com/v1/predictions/w3ynmgr3e5rm20chqmw90sy4w0/cancel"
},
"version": "b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c"
}
Using seed: 23147
Prompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting
txt2img mode
Using dev model
free=9422393511936
Downloading weights
2024-09-04T13:27:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpczni2c48/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar
2024-09-04T13:27:47Z | INFO | [ Complete ] dest=/tmp/tmpczni2c48/weights size="172 MB" total_elapsed=3.448s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar
Downloaded weights in 3.48s
Loaded LoRAs in 21.58s
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:01<00:40, 1.05s/it]
5%|▌ | 2/40 [00:01<00:35, 1.08it/s]
8%|▊ | 3/40 [00:02<00:36, 1.02it/s]
10%|█ | 4/40 [00:03<00:36, 1.01s/it]
12%|█▎ | 5/40 [00:05<00:35, 1.02s/it]
15%|█▌ | 6/40 [00:06<00:35, 1.03s/it]
18%|█▊ | 7/40 [00:07<00:34, 1.04s/it]
20%|██ | 8/40 [00:08<00:33, 1.05s/it]
22%|██▎ | 9/40 [00:09<00:32, 1.05s/it]
25%|██▌ | 10/40 [00:10<00:31, 1.05s/it]
28%|██▊ | 11/40 [00:11<00:30, 1.05s/it]
30%|███ | 12/40 [00:12<00:29, 1.05s/it]
32%|███▎ | 13/40 [00:13<00:28, 1.05s/it]
35%|███▌ | 14/40 [00:14<00:27, 1.05s/it]
38%|███▊ | 15/40 [00:15<00:26, 1.05s/it]
40%|████ | 16/40 [00:16<00:25, 1.06s/it]
42%|████▎ | 17/40 [00:17<00:24, 1.06s/it]
45%|████▌ | 18/40 [00:18<00:23, 1.06s/it]
48%|████▊ | 19/40 [00:19<00:22, 1.06s/it]
50%|█████ | 20/40 [00:20<00:21, 1.06s/it]
52%|█████▎ | 21/40 [00:21<00:20, 1.06s/it]
55%|█████▌ | 22/40 [00:22<00:19, 1.06s/it]
57%|█████▊ | 23/40 [00:24<00:17, 1.06s/it]
60%|██████ | 24/40 [00:25<00:16, 1.06s/it]
62%|██████▎ | 25/40 [00:26<00:15, 1.06s/it]
65%|██████▌ | 26/40 [00:27<00:14, 1.06s/it]
68%|██████▊ | 27/40 [00:28<00:13, 1.05s/it]
70%|███████ | 28/40 [00:29<00:12, 1.06s/it]
72%|███████▎ | 29/40 [00:30<00:11, 1.06s/it]
75%|███████▌ | 30/40 [00:31<00:10, 1.06s/it]
78%|███████▊ | 31/40 [00:32<00:09, 1.06s/it]
80%|████████ | 32/40 [00:33<00:08, 1.06s/it]
82%|████████▎ | 33/40 [00:34<00:07, 1.06s/it]
85%|████████▌ | 34/40 [00:35<00:06, 1.06s/it]
88%|████████▊ | 35/40 [00:36<00:05, 1.06s/it]
90%|█████████ | 36/40 [00:37<00:04, 1.05s/it]
92%|█████████▎| 37/40 [00:38<00:03, 1.05s/it]
95%|█████████▌| 38/40 [00:39<00:02, 1.06s/it]
98%|█████████▊| 39/40 [00:40<00:01, 1.06s/it]
100%|██████████| 40/40 [00:42<00:00, 1.06s/it]
100%|██████████| 40/40 [00:42<00:00, 1.05s/it]