You're looking at a specific version of this model. Jump to the model overview.
edenartlab /sdxl-lora-trainer:f5d47d95
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run edenartlab/sdxl-lora-trainer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"edenartlab/sdxl-lora-trainer:f5d47d9571bb69bb1a95a421a500f175984c2d5bfbb7d0f7f31a65e218cf8604",
{
input: {
name: "unnamed",
debug: false,
ti_lr: 0.001,
is_lora: true,
verbose: true,
n_tokens: 2,
run_name: "1717014314",
lora_rank: 12,
snr_gamma: 5,
hard_pivot: false,
l1_penalty: 0.1,
resolution: 960,
concept_mode: "object",
caption_prefix: "",
prodigy_d_coef: 0.8,
max_train_steps: 600,
off_ratio_power: 0.1,
ti_weight_decay: 0.0003,
num_train_epochs: 10000,
train_batch_size: 4,
lora_param_scaler: 0.5,
lora_weight_decay: 0.002,
checkpointing_steps: 10000,
clipseg_temperature: 0.6,
augment_imgs_up_to_n: 20,
crop_based_on_salience: true,
use_face_detection_instead: false,
left_right_flip_augmentation: true
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run edenartlab/sdxl-lora-trainer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"edenartlab/sdxl-lora-trainer:f5d47d9571bb69bb1a95a421a500f175984c2d5bfbb7d0f7f31a65e218cf8604",
input={
"name": "unnamed",
"debug": False,
"ti_lr": 0.001,
"is_lora": True,
"verbose": True,
"n_tokens": 2,
"run_name": "1717014314",
"lora_rank": 12,
"snr_gamma": 5,
"hard_pivot": False,
"l1_penalty": 0.1,
"resolution": 960,
"concept_mode": "object",
"caption_prefix": "",
"prodigy_d_coef": 0.8,
"max_train_steps": 600,
"off_ratio_power": 0.1,
"ti_weight_decay": 0.0003,
"num_train_epochs": 10000,
"train_batch_size": 4,
"lora_param_scaler": 0.5,
"lora_weight_decay": 0.002,
"checkpointing_steps": 10000,
"clipseg_temperature": 0.6,
"augment_imgs_up_to_n": 20,
"crop_based_on_salience": True,
"use_face_detection_instead": False,
"left_right_flip_augmentation": True
}
)
# The edenartlab/sdxl-lora-trainer model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/edenartlab/sdxl-lora-trainer/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run edenartlab/sdxl-lora-trainer using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "f5d47d9571bb69bb1a95a421a500f175984c2d5bfbb7d0f7f31a65e218cf8604",
"input": {
"name": "unnamed",
"debug": false,
"ti_lr": 0.001,
"is_lora": true,
"verbose": true,
"n_tokens": 2,
"run_name": "1717014314",
"lora_rank": 12,
"snr_gamma": 5,
"hard_pivot": false,
"l1_penalty": 0.1,
"resolution": 960,
"concept_mode": "object",
"caption_prefix": "",
"prodigy_d_coef": 0.8,
"max_train_steps": 600,
"off_ratio_power": 0.1,
"ti_weight_decay": 0.0003,
"num_train_epochs": 10000,
"train_batch_size": 4,
"lora_param_scaler": 0.5,
"lora_weight_decay": 0.002,
"checkpointing_steps": 10000,
"clipseg_temperature": 0.6,
"augment_imgs_up_to_n": 20,
"crop_based_on_salience": true,
"use_face_detection_instead": false,
"left_right_flip_augmentation": true
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/edenartlab/sdxl-lora-trainer@sha256:f5d47d9571bb69bb1a95a421a500f175984c2d5bfbb7d0f7f31a65e218cf8604 \
-i 'name="unnamed"' \
-i 'debug=false' \
-i 'ti_lr=0.001' \
-i 'is_lora=true' \
-i 'verbose=true' \
-i 'n_tokens=2' \
-i 'run_name="1717014314"' \
-i 'lora_rank=12' \
-i 'snr_gamma=5' \
-i 'hard_pivot=false' \
-i 'l1_penalty=0.1' \
-i 'resolution=960' \
-i 'concept_mode="object"' \
-i 'caption_prefix=""' \
-i 'prodigy_d_coef=0.8' \
-i 'max_train_steps=600' \
-i 'off_ratio_power=0.1' \
-i 'ti_weight_decay=0.0003' \
-i 'num_train_epochs=10000' \
-i 'train_batch_size=4' \
-i 'lora_param_scaler=0.5' \
-i 'lora_weight_decay=0.002' \
-i 'checkpointing_steps=10000' \
-i 'clipseg_temperature=0.6' \
-i 'augment_imgs_up_to_n=20' \
-i 'crop_based_on_salience=true' \
-i 'use_face_detection_instead=false' \
-i 'left_right_flip_augmentation=true'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/edenartlab/sdxl-lora-trainer@sha256:f5d47d9571bb69bb1a95a421a500f175984c2d5bfbb7d0f7f31a65e218cf8604
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "name": "unnamed", "debug": false, "ti_lr": 0.001, "is_lora": true, "verbose": true, "n_tokens": 2, "run_name": "1717014314", "lora_rank": 12, "snr_gamma": 5, "hard_pivot": false, "l1_penalty": 0.1, "resolution": 960, "concept_mode": "object", "caption_prefix": "", "prodigy_d_coef": 0.8, "max_train_steps": 600, "off_ratio_power": 0.1, "ti_weight_decay": 0.0003, "num_train_epochs": 10000, "train_batch_size": 4, "lora_param_scaler": 0.5, "lora_weight_decay": 0.002, "checkpointing_steps": 10000, "clipseg_temperature": 0.6, "augment_imgs_up_to_n": 20, "crop_based_on_salience": true, "use_face_detection_instead": false, "left_right_flip_augmentation": true } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.