Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
fermatresearch /sdxl-lcm-lora-controlnet:d9db096a
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fermatresearch/sdxl-lcm-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fermatresearch/sdxl-lcm-lora-controlnet:d9db096aec79855d1f42d2bd4fc89f2b1ddf7dcd00118a0e21b8f1d5c03be099",
{
input: {
width: 1024,
height: 1024,
prompt: "shot in the style of sksfer, a boy playing with some toys",
scheduler: "LCM",
lora_scale: 0.9,
num_outputs: 1,
lora_weights: "https://pbxt.replicate.delivery/QmdRkthSZmqTEBMgVi17OqpdKkafyLTS6TGmzTF5Qbo9d13IA/trained_model.tar",
batched_prompt: false,
guidance_scale: 2,
apply_watermark: true,
condition_scale: 0.45,
negative_prompt: "",
prompt_strength: 0.8,
controlnet_image: "https://replicate.delivery/pbxt/JsNziYC0Ha190bMKRDwkR5FpRGDrewOXzGH7mneGnHG4jREV/1f8edf0a-6ae1-4021-8ad2-e866e98d6efd.png",
num_inference_steps: 6
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fermatresearch/sdxl-lcm-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fermatresearch/sdxl-lcm-lora-controlnet:d9db096aec79855d1f42d2bd4fc89f2b1ddf7dcd00118a0e21b8f1d5c03be099",
input={
"width": 1024,
"height": 1024,
"prompt": "shot in the style of sksfer, a boy playing with some toys",
"scheduler": "LCM",
"lora_scale": 0.9,
"num_outputs": 1,
"lora_weights": "https://pbxt.replicate.delivery/QmdRkthSZmqTEBMgVi17OqpdKkafyLTS6TGmzTF5Qbo9d13IA/trained_model.tar",
"batched_prompt": False,
"guidance_scale": 2,
"apply_watermark": True,
"condition_scale": 0.45,
"negative_prompt": "",
"prompt_strength": 0.8,
"controlnet_image": "https://replicate.delivery/pbxt/JsNziYC0Ha190bMKRDwkR5FpRGDrewOXzGH7mneGnHG4jREV/1f8edf0a-6ae1-4021-8ad2-e866e98d6efd.png",
"num_inference_steps": 6
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fermatresearch/sdxl-lcm-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "d9db096aec79855d1f42d2bd4fc89f2b1ddf7dcd00118a0e21b8f1d5c03be099",
"input": {
"width": 1024,
"height": 1024,
"prompt": "shot in the style of sksfer, a boy playing with some toys",
"scheduler": "LCM",
"lora_scale": 0.9,
"num_outputs": 1,
"lora_weights": "https://pbxt.replicate.delivery/QmdRkthSZmqTEBMgVi17OqpdKkafyLTS6TGmzTF5Qbo9d13IA/trained_model.tar",
"batched_prompt": false,
"guidance_scale": 2,
"apply_watermark": true,
"condition_scale": 0.45,
"negative_prompt": "",
"prompt_strength": 0.8,
"controlnet_image": "https://replicate.delivery/pbxt/JsNziYC0Ha190bMKRDwkR5FpRGDrewOXzGH7mneGnHG4jREV/1f8edf0a-6ae1-4021-8ad2-e866e98d6efd.png",
"num_inference_steps": 6
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-14T15:26:54.484430Z",
"created_at": "2023-11-14T15:26:50.711437Z",
"data_removed": false,
"error": null,
"id": "szk7rylbfq6aosmfuvkfczlogm",
"input": {
"width": 1024,
"height": 1024,
"prompt": "shot in the style of sksfer, a boy playing with some toys",
"scheduler": "LCM",
"lora_scale": 0.9,
"num_outputs": 1,
"lora_weights": "https://pbxt.replicate.delivery/QmdRkthSZmqTEBMgVi17OqpdKkafyLTS6TGmzTF5Qbo9d13IA/trained_model.tar",
"batched_prompt": false,
"guidance_scale": 2,
"apply_watermark": true,
"condition_scale": 0.45,
"negative_prompt": "",
"prompt_strength": 0.8,
"controlnet_image": "https://replicate.delivery/pbxt/JsNziYC0Ha190bMKRDwkR5FpRGDrewOXzGH7mneGnHG4jREV/1f8edf0a-6ae1-4021-8ad2-e866e98d6efd.png",
"num_inference_steps": 6
},
"logs": "Using seed: 59453\nskipping loading .. weights already loaded\nPrompt: shot in the style of <s0><s1>, a boy playing with some toys\nThe config attributes {'skip_prk_steps': True} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\n 0%| | 0/6 [00:00<?, ?it/s]\n 17%|█▋ | 1/6 [00:00<00:01, 4.77it/s]\n 33%|███▎ | 2/6 [00:00<00:00, 4.77it/s]\n 50%|█████ | 3/6 [00:00<00:00, 4.77it/s]\n 67%|██████▋ | 4/6 [00:00<00:00, 4.76it/s]\n 83%|████████▎ | 5/6 [00:01<00:00, 4.76it/s]\n100%|██████████| 6/6 [00:01<00:00, 4.76it/s]\n100%|██████████| 6/6 [00:01<00:00, 4.76it/s]",
"metrics": {
"predict_time": 3.715988,
"total_time": 3.772993
},
"output": [
"https://replicate.delivery/pbxt/URStBauvk2KTHl0Be5UaczWxPPdeX5cDm4fyvQYYQ876dowjA/out-0.png"
],
"started_at": "2023-11-14T15:26:50.768442Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/szk7rylbfq6aosmfuvkfczlogm",
"cancel": "https://api.replicate.com/v1/predictions/szk7rylbfq6aosmfuvkfczlogm/cancel"
},
"version": "d9db096aec79855d1f42d2bd4fc89f2b1ddf7dcd00118a0e21b8f1d5c03be099"
}
Using seed: 59453
skipping loading .. weights already loaded
Prompt: shot in the style of <s0><s1>, a boy playing with some toys
The config attributes {'skip_prk_steps': True} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
0%| | 0/6 [00:00<?, ?it/s]
17%|█▋ | 1/6 [00:00<00:01, 4.77it/s]
33%|███▎ | 2/6 [00:00<00:00, 4.77it/s]
50%|█████ | 3/6 [00:00<00:00, 4.77it/s]
67%|██████▋ | 4/6 [00:00<00:00, 4.76it/s]
83%|████████▎ | 5/6 [00:01<00:00, 4.76it/s]
100%|██████████| 6/6 [00:01<00:00, 4.76it/s]
100%|██████████| 6/6 [00:01<00:00, 4.76it/s]