You're looking at a specific version of this model. Jump to the model overview.
fermatresearch /sdxl-outpainting-lora:a542ccf3
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fermatresearch/sdxl-outpainting-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fermatresearch/sdxl-outpainting-lora:a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804",
{
input: {
image: "https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png",
prompt: "beautiful european city with dramatic light",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
outpaint_up: 0,
outpaint_down: 0,
outpaint_left: 256,
guidance_scale: 7.5,
outpaint_right: 256,
apply_watermark: false,
condition_scale: 0.25,
negative_prompt: ""
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fermatresearch/sdxl-outpainting-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fermatresearch/sdxl-outpainting-lora:a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804",
input={
"image": "https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png",
"prompt": "beautiful european city with dramatic light",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"outpaint_up": 0,
"outpaint_down": 0,
"outpaint_left": 256,
"guidance_scale": 7.5,
"outpaint_right": 256,
"apply_watermark": False,
"condition_scale": 0.25,
"negative_prompt": ""
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fermatresearch/sdxl-outpainting-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804",
"input": {
"image": "https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png",
"prompt": "beautiful european city with dramatic light",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"outpaint_up": 0,
"outpaint_down": 0,
"outpaint_left": 256,
"guidance_scale": 7.5,
"outpaint_right": 256,
"apply_watermark": false,
"condition_scale": 0.25,
"negative_prompt": ""
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fermatresearch/sdxl-outpainting-lora@sha256:a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804 \
-i 'image="https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png"' \
-i 'prompt="beautiful european city with dramatic light"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'outpaint_up=0' \
-i 'outpaint_down=0' \
-i 'outpaint_left=256' \
-i 'guidance_scale=7.5' \
-i 'outpaint_right=256' \
-i 'apply_watermark=false' \
-i 'condition_scale=0.25' \
-i 'negative_prompt=""'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fermatresearch/sdxl-outpainting-lora@sha256:a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png", "prompt": "beautiful european city with dramatic light", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "outpaint_up": 0, "outpaint_down": 0, "outpaint_left": 256, "guidance_scale": 7.5, "outpaint_right": 256, "apply_watermark": false, "condition_scale": 0.25, "negative_prompt": "" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.16. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-06-05T15:15:14.447491Z",
"created_at": "2024-06-05T15:07:54.956000Z",
"data_removed": false,
"error": null,
"id": "95r3xqswshrgp0cfx3rsr9q67m",
"input": {
"image": "https://replicate.delivery/pbxt/L2nC0t0m7YTGI4vUfOxZUSHgKNilHMJUVO67rqC8qo5lYC9J/fermat_app_a_realistic_image_of_a_street_from_paris_e9db015b-1068-4c6c-9884-0265d939dcb2.png",
"prompt": "beautiful european city with dramatic light",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"outpaint_up": 0,
"outpaint_down": 0,
"outpaint_left": 256,
"guidance_scale": 7.5,
"outpaint_right": 256,
"apply_watermark": false,
"condition_scale": 0.25,
"negative_prompt": ""
},
"logs": "Using seed: 34499\nApplying smart preprocessing...\nRunning PatchMatch\nPatchMatch completed, time taken: 12332.704345703125 ms\nRunning PatchMatch\nPatchMatch completed, time taken: 21385.12060546875 ms\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:10, 1.77it/s]\n 11%|█ | 2/19 [00:00<00:07, 2.42it/s]\n 16%|█▌ | 3/19 [00:01<00:07, 2.27it/s]\n 21%|██ | 4/19 [00:01<00:06, 2.20it/s]\n 26%|██▋ | 5/19 [00:02<00:06, 2.16it/s]\n 32%|███▏ | 6/19 [00:02<00:06, 2.14it/s]\n 37%|███▋ | 7/19 [00:03<00:05, 2.13it/s]\n 42%|████▏ | 8/19 [00:03<00:05, 2.12it/s]\n 47%|████▋ | 9/19 [00:04<00:04, 2.11it/s]\n 53%|█████▎ | 10/19 [00:04<00:04, 2.11it/s]\n 58%|█████▊ | 11/19 [00:05<00:03, 2.10it/s]\n 63%|██████▎ | 12/19 [00:05<00:03, 2.10it/s]\n 68%|██████▊ | 13/19 [00:06<00:02, 2.10it/s]\n 74%|███████▎ | 14/19 [00:06<00:02, 2.10it/s]\n 79%|███████▉ | 15/19 [00:07<00:01, 2.10it/s]\n 84%|████████▍ | 16/19 [00:07<00:01, 2.09it/s]\n 89%|████████▉ | 17/19 [00:08<00:00, 2.09it/s]\n 95%|█████████▍| 18/19 [00:08<00:00, 2.09it/s]\n100%|██████████| 19/19 [00:08<00:00, 2.09it/s]\n100%|██████████| 19/19 [00:08<00:00, 2.12it/s]",
"metrics": {
"predict_time": 47.387431,
"total_time": 439.491491
},
"output": [
"https://replicate.delivery/pbxt/ijEcNuS5hnIBMFstWsEkcPeINwiyvS0ZaeepJePZwZfHgZcXC/out-0.png"
],
"started_at": "2024-06-05T15:14:27.060060Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/95r3xqswshrgp0cfx3rsr9q67m",
"cancel": "https://api.replicate.com/v1/predictions/95r3xqswshrgp0cfx3rsr9q67m/cancel"
},
"version": "a542ccf352995f3c41f0bcfaef641daa3058bf2b00e08e04feb0295334ab9804"
}
Using seed: 34499
Applying smart preprocessing...
Running PatchMatch
PatchMatch completed, time taken: 12332.704345703125 ms
Running PatchMatch
PatchMatch completed, time taken: 21385.12060546875 ms
0%| | 0/19 [00:00<?, ?it/s]
5%|▌ | 1/19 [00:00<00:10, 1.77it/s]
11%|█ | 2/19 [00:00<00:07, 2.42it/s]
16%|█▌ | 3/19 [00:01<00:07, 2.27it/s]
21%|██ | 4/19 [00:01<00:06, 2.20it/s]
26%|██▋ | 5/19 [00:02<00:06, 2.16it/s]
32%|███▏ | 6/19 [00:02<00:06, 2.14it/s]
37%|███▋ | 7/19 [00:03<00:05, 2.13it/s]
42%|████▏ | 8/19 [00:03<00:05, 2.12it/s]
47%|████▋ | 9/19 [00:04<00:04, 2.11it/s]
53%|█████▎ | 10/19 [00:04<00:04, 2.11it/s]
58%|█████▊ | 11/19 [00:05<00:03, 2.10it/s]
63%|██████▎ | 12/19 [00:05<00:03, 2.10it/s]
68%|██████▊ | 13/19 [00:06<00:02, 2.10it/s]
74%|███████▎ | 14/19 [00:06<00:02, 2.10it/s]
79%|███████▉ | 15/19 [00:07<00:01, 2.10it/s]
84%|████████▍ | 16/19 [00:07<00:01, 2.09it/s]
89%|████████▉ | 17/19 [00:08<00:00, 2.09it/s]
95%|█████████▍| 18/19 [00:08<00:00, 2.09it/s]
100%|██████████| 19/19 [00:08<00:00, 2.09it/s]
100%|██████████| 19/19 [00:08<00:00, 2.12it/s]