Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-emoji:e6484351
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-emoji:e6484351b3c943cbd507d938df8abc598cb05c44f4e67ee82be0beea5f495f31",
{
input: {
width: 1024,
height: 1024,
prompt: "A TOK emoji of a tiger face, white background",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.99,
negative_prompt: "soft",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-emoji:e6484351b3c943cbd507d938df8abc598cb05c44f4e67ee82be0beea5f495f31",
input={
"width": 1024,
"height": 1024,
"prompt": "A TOK emoji of a tiger face, white background",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.99,
"negative_prompt": "soft",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "fofr/sdxl-emoji:e6484351b3c943cbd507d938df8abc598cb05c44f4e67ee82be0beea5f495f31",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A TOK emoji of a tiger face, white background",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.99,
"negative_prompt": "soft",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-04T09:36:34.471003Z",
"created_at": "2023-09-04T09:36:19.219972Z",
"data_removed": false,
"error": null,
"id": "v3vwup3bommw264amkfoxhpvie",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A TOK emoji of a tiger face, white background",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.99,
"negative_prompt": "soft",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 25529\nPrompt: A <s0><s1> emoji of a tiger face, white background\ntxt2img mode\n 0%| | 0/49 [00:00<?, ?it/s]\n 2%|▏ | 1/49 [00:00<00:13, 3.69it/s]\n 4%|▍ | 2/49 [00:00<00:12, 3.68it/s]\n 6%|▌ | 3/49 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/49 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/49 [00:01<00:12, 3.66it/s]\n 12%|█▏ | 6/49 [00:01<00:11, 3.66it/s]\n 14%|█▍ | 7/49 [00:01<00:11, 3.66it/s]\n 16%|█▋ | 8/49 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/49 [00:02<00:10, 3.66it/s]\n 20%|██ | 10/49 [00:02<00:10, 3.66it/s]\n 22%|██▏ | 11/49 [00:03<00:10, 3.66it/s]\n 24%|██▍ | 12/49 [00:03<00:10, 3.65it/s]\n 27%|██▋ | 13/49 [00:03<00:09, 3.65it/s]\n 29%|██▊ | 14/49 [00:03<00:09, 3.66it/s]\n 31%|███ | 15/49 [00:04<00:09, 3.66it/s]\n 33%|███▎ | 16/49 [00:04<00:09, 3.67it/s]\n 35%|███▍ | 17/49 [00:04<00:08, 3.67it/s]\n 37%|███▋ | 18/49 [00:04<00:08, 3.67it/s]\n 39%|███▉ | 19/49 [00:05<00:08, 3.67it/s]\n 41%|████ | 20/49 [00:05<00:07, 3.68it/s]\n 43%|████▎ | 21/49 [00:05<00:07, 3.68it/s]\n 45%|████▍ | 22/49 [00:06<00:07, 3.68it/s]\n 47%|████▋ | 23/49 [00:06<00:07, 3.68it/s]\n 49%|████▉ | 24/49 [00:06<00:06, 3.67it/s]\n 51%|█████ | 25/49 [00:06<00:06, 3.67it/s]\n 53%|█████▎ | 26/49 [00:07<00:06, 3.67it/s]\n 55%|█████▌ | 27/49 [00:07<00:05, 3.67it/s]\n 57%|█████▋ | 28/49 [00:07<00:05, 3.67it/s]\n 59%|█████▉ | 29/49 [00:07<00:05, 3.67it/s]\n 61%|██████ | 30/49 [00:08<00:05, 3.67it/s]\n 63%|██████▎ | 31/49 [00:08<00:04, 3.67it/s]\n 65%|██████▌ | 32/49 [00:08<00:04, 3.67it/s]\n 67%|██████▋ | 33/49 [00:08<00:04, 3.67it/s]\n 69%|██████▉ | 34/49 [00:09<00:04, 3.67it/s]\n 71%|███████▏ | 35/49 [00:09<00:03, 3.67it/s]\n 73%|███████▎ | 36/49 [00:09<00:03, 3.67it/s]\n 76%|███████▌ | 37/49 [00:10<00:03, 3.67it/s]\n 78%|███████▊ | 38/49 [00:10<00:02, 3.67it/s]\n 80%|███████▉ | 39/49 [00:10<00:02, 3.67it/s]\n 82%|████████▏ | 40/49 [00:10<00:02, 3.67it/s]\n 84%|████████▎ | 41/49 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 42/49 [00:11<00:01, 3.67it/s]\n 88%|████████▊ | 43/49 [00:11<00:01, 3.67it/s]\n 90%|████████▉ | 44/49 [00:11<00:01, 3.67it/s]\n 92%|█████████▏| 45/49 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 46/49 [00:12<00:00, 3.67it/s]\n 96%|█████████▌| 47/49 [00:12<00:00, 3.67it/s]\n 98%|█████████▊| 48/49 [00:13<00:00, 3.67it/s]\n100%|██████████| 49/49 [00:13<00:00, 3.67it/s]\n100%|██████████| 49/49 [00:13<00:00, 3.67it/s]\n 0%| | 0/1 [00:00<?, ?it/s]\n100%|██████████| 1/1 [00:00<00:00, 4.19it/s]\n100%|██████████| 1/1 [00:00<00:00, 4.18it/s]",
"metrics": {
"predict_time": 15.261507,
"total_time": 15.251031
},
"output": [
"https://replicate.delivery/pbxt/J6vOuC0Yj647JRa9YAUMq1vbGKFAiOreQcKuJmHLI0wQuawIA/out-0.png"
],
"started_at": "2023-09-04T09:36:19.209496Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/v3vwup3bommw264amkfoxhpvie",
"cancel": "https://api.replicate.com/v1/predictions/v3vwup3bommw264amkfoxhpvie/cancel"
},
"version": "e6484351b3c943cbd507d938df8abc598cb05c44f4e67ee82be0beea5f495f31"
}
Using seed: 25529
Prompt: A <s0><s1> emoji of a tiger face, white background
txt2img mode
0%| | 0/49 [00:00<?, ?it/s]
2%|▏ | 1/49 [00:00<00:13, 3.69it/s]
4%|▍ | 2/49 [00:00<00:12, 3.68it/s]
6%|▌ | 3/49 [00:00<00:12, 3.67it/s]
8%|▊ | 4/49 [00:01<00:12, 3.67it/s]
10%|█ | 5/49 [00:01<00:12, 3.66it/s]
12%|█▏ | 6/49 [00:01<00:11, 3.66it/s]
14%|█▍ | 7/49 [00:01<00:11, 3.66it/s]
16%|█▋ | 8/49 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/49 [00:02<00:10, 3.66it/s]
20%|██ | 10/49 [00:02<00:10, 3.66it/s]
22%|██▏ | 11/49 [00:03<00:10, 3.66it/s]
24%|██▍ | 12/49 [00:03<00:10, 3.65it/s]
27%|██▋ | 13/49 [00:03<00:09, 3.65it/s]
29%|██▊ | 14/49 [00:03<00:09, 3.66it/s]
31%|███ | 15/49 [00:04<00:09, 3.66it/s]
33%|███▎ | 16/49 [00:04<00:09, 3.67it/s]
35%|███▍ | 17/49 [00:04<00:08, 3.67it/s]
37%|███▋ | 18/49 [00:04<00:08, 3.67it/s]
39%|███▉ | 19/49 [00:05<00:08, 3.67it/s]
41%|████ | 20/49 [00:05<00:07, 3.68it/s]
43%|████▎ | 21/49 [00:05<00:07, 3.68it/s]
45%|████▍ | 22/49 [00:06<00:07, 3.68it/s]
47%|████▋ | 23/49 [00:06<00:07, 3.68it/s]
49%|████▉ | 24/49 [00:06<00:06, 3.67it/s]
51%|█████ | 25/49 [00:06<00:06, 3.67it/s]
53%|█████▎ | 26/49 [00:07<00:06, 3.67it/s]
55%|█████▌ | 27/49 [00:07<00:05, 3.67it/s]
57%|█████▋ | 28/49 [00:07<00:05, 3.67it/s]
59%|█████▉ | 29/49 [00:07<00:05, 3.67it/s]
61%|██████ | 30/49 [00:08<00:05, 3.67it/s]
63%|██████▎ | 31/49 [00:08<00:04, 3.67it/s]
65%|██████▌ | 32/49 [00:08<00:04, 3.67it/s]
67%|██████▋ | 33/49 [00:08<00:04, 3.67it/s]
69%|██████▉ | 34/49 [00:09<00:04, 3.67it/s]
71%|███████▏ | 35/49 [00:09<00:03, 3.67it/s]
73%|███████▎ | 36/49 [00:09<00:03, 3.67it/s]
76%|███████▌ | 37/49 [00:10<00:03, 3.67it/s]
78%|███████▊ | 38/49 [00:10<00:02, 3.67it/s]
80%|███████▉ | 39/49 [00:10<00:02, 3.67it/s]
82%|████████▏ | 40/49 [00:10<00:02, 3.67it/s]
84%|████████▎ | 41/49 [00:11<00:02, 3.67it/s]
86%|████████▌ | 42/49 [00:11<00:01, 3.67it/s]
88%|████████▊ | 43/49 [00:11<00:01, 3.67it/s]
90%|████████▉ | 44/49 [00:11<00:01, 3.67it/s]
92%|█████████▏| 45/49 [00:12<00:01, 3.67it/s]
94%|█████████▍| 46/49 [00:12<00:00, 3.67it/s]
96%|█████████▌| 47/49 [00:12<00:00, 3.67it/s]
98%|█████████▊| 48/49 [00:13<00:00, 3.67it/s]
100%|██████████| 49/49 [00:13<00:00, 3.67it/s]
100%|██████████| 49/49 [00:13<00:00, 3.67it/s]
0%| | 0/1 [00:00<?, ?it/s]
100%|██████████| 1/1 [00:00<00:00, 4.19it/s]
100%|██████████| 1/1 [00:00<00:00, 4.18it/s]