You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-labyrinth:a95510c9
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-labyrinth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-labyrinth:a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2",
{
input: {
width: 1152,
height: 768,
prompt: "A photo of a demon in a bedroom in the style of TOK",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.95,
negative_prompt: "render, broken, distorted, disfigured",
prompt_strength: 0.85,
num_inference_steps: 40
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-labyrinth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-labyrinth:a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2",
input={
"width": 1152,
"height": 768,
"prompt": "A photo of a demon in a bedroom in the style of TOK",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.95,
"negative_prompt": "render, broken, distorted, disfigured",
"prompt_strength": 0.85,
"num_inference_steps": 40
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-labyrinth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "fofr/sdxl-labyrinth:a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2",
"input": {
"width": 1152,
"height": 768,
"prompt": "A photo of a demon in a bedroom in the style of TOK",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "render, broken, distorted, disfigured",
"prompt_strength": 0.85,
"num_inference_steps": 40
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/sdxl-labyrinth@sha256:a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2 \
-i 'width=1152' \
-i 'height=768' \
-i 'prompt="A photo of a demon in a bedroom in the style of TOK"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.95' \
-i 'negative_prompt="render, broken, distorted, disfigured"' \
-i 'prompt_strength=0.85' \
-i 'num_inference_steps=40'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sdxl-labyrinth@sha256:a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A photo of a demon in a bedroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.95, "negative_prompt": "render, broken, distorted, disfigured", "prompt_strength": 0.85, "num_inference_steps": 40 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.034. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-01T22:17:34.367029Z",
"created_at": "2023-09-01T22:17:23.332533Z",
"data_removed": false,
"error": null,
"id": "d3both3b2iwpm736kzyabzjw6i",
"input": {
"width": 1152,
"height": 768,
"prompt": "A photo of a demon in a bedroom in the style of TOK",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "render, broken, distorted, disfigured",
"prompt_strength": 0.85,
"num_inference_steps": 40
},
"logs": "Using seed: 19334\nPrompt: A photo of a demon in a bedroom in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/38 [00:00<?, ?it/s]\n 3%|▎ | 1/38 [00:00<00:08, 4.34it/s]\n 5%|▌ | 2/38 [00:00<00:08, 4.33it/s]\n 8%|▊ | 3/38 [00:00<00:08, 4.33it/s]\n 11%|█ | 4/38 [00:00<00:07, 4.33it/s]\n 13%|█▎ | 5/38 [00:01<00:07, 4.32it/s]\n 16%|█▌ | 6/38 [00:01<00:07, 4.32it/s]\n 18%|█▊ | 7/38 [00:01<00:07, 4.32it/s]\n 21%|██ | 8/38 [00:01<00:06, 4.32it/s]\n 24%|██▎ | 9/38 [00:02<00:06, 4.32it/s]\n 26%|██▋ | 10/38 [00:02<00:06, 4.32it/s]\n 29%|██▉ | 11/38 [00:02<00:06, 4.32it/s]\n 32%|███▏ | 12/38 [00:02<00:06, 4.32it/s]\n 34%|███▍ | 13/38 [00:03<00:05, 4.32it/s]\n 37%|███▋ | 14/38 [00:03<00:05, 4.32it/s]\n 39%|███▉ | 15/38 [00:03<00:05, 4.32it/s]\n 42%|████▏ | 16/38 [00:03<00:05, 4.32it/s]\n 45%|████▍ | 17/38 [00:03<00:04, 4.32it/s]\n 47%|████▋ | 18/38 [00:04<00:04, 4.30it/s]\n 50%|█████ | 19/38 [00:04<00:04, 4.30it/s]\n 53%|█████▎ | 20/38 [00:04<00:04, 4.30it/s]\n 55%|█████▌ | 21/38 [00:04<00:03, 4.30it/s]\n 58%|█████▊ | 22/38 [00:05<00:03, 4.30it/s]\n 61%|██████ | 23/38 [00:05<00:03, 4.30it/s]\n 63%|██████▎ | 24/38 [00:05<00:03, 4.30it/s]\n 66%|██████▌ | 25/38 [00:05<00:03, 4.30it/s]\n 68%|██████▊ | 26/38 [00:06<00:02, 4.30it/s]\n 71%|███████ | 27/38 [00:06<00:02, 4.30it/s]\n 74%|███████▎ | 28/38 [00:06<00:02, 4.30it/s]\n 76%|███████▋ | 29/38 [00:06<00:02, 4.31it/s]\n 79%|███████▉ | 30/38 [00:06<00:01, 4.30it/s]\n 82%|████████▏ | 31/38 [00:07<00:01, 4.30it/s]\n 84%|████████▍ | 32/38 [00:07<00:01, 4.30it/s]\n 87%|████████▋ | 33/38 [00:07<00:01, 4.30it/s]\n 89%|████████▉ | 34/38 [00:07<00:00, 4.29it/s]\n 92%|█████████▏| 35/38 [00:08<00:00, 4.30it/s]\n 95%|█████████▍| 36/38 [00:08<00:00, 4.29it/s]\n 97%|█████████▋| 37/38 [00:08<00:00, 4.29it/s]\n100%|██████████| 38/38 [00:08<00:00, 4.30it/s]\n100%|██████████| 38/38 [00:08<00:00, 4.31it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:00<00:00, 5.60it/s]\n100%|██████████| 2/2 [00:00<00:00, 5.55it/s]\n100%|██████████| 2/2 [00:00<00:00, 5.56it/s]",
"metrics": {
"predict_time": 11.032898,
"total_time": 11.034496
},
"output": [
"https://replicate.delivery/pbxt/dMEIl2FbIBofTa35Nddi30JtW9lmqDji0ll7eInVWeu6nCAjA/out-0.png"
],
"started_at": "2023-09-01T22:17:23.334131Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/d3both3b2iwpm736kzyabzjw6i",
"cancel": "https://api.replicate.com/v1/predictions/d3both3b2iwpm736kzyabzjw6i/cancel"
},
"version": "a95510c9f58c973633edd21fd871312505612991d1f7253db44519914bf680a2"
}
Using seed: 19334
Prompt: A photo of a demon in a bedroom in the style of <s0><s1>
txt2img mode
0%| | 0/38 [00:00<?, ?it/s]
3%|▎ | 1/38 [00:00<00:08, 4.34it/s]
5%|▌ | 2/38 [00:00<00:08, 4.33it/s]
8%|▊ | 3/38 [00:00<00:08, 4.33it/s]
11%|█ | 4/38 [00:00<00:07, 4.33it/s]
13%|█▎ | 5/38 [00:01<00:07, 4.32it/s]
16%|█▌ | 6/38 [00:01<00:07, 4.32it/s]
18%|█▊ | 7/38 [00:01<00:07, 4.32it/s]
21%|██ | 8/38 [00:01<00:06, 4.32it/s]
24%|██▎ | 9/38 [00:02<00:06, 4.32it/s]
26%|██▋ | 10/38 [00:02<00:06, 4.32it/s]
29%|██▉ | 11/38 [00:02<00:06, 4.32it/s]
32%|███▏ | 12/38 [00:02<00:06, 4.32it/s]
34%|███▍ | 13/38 [00:03<00:05, 4.32it/s]
37%|███▋ | 14/38 [00:03<00:05, 4.32it/s]
39%|███▉ | 15/38 [00:03<00:05, 4.32it/s]
42%|████▏ | 16/38 [00:03<00:05, 4.32it/s]
45%|████▍ | 17/38 [00:03<00:04, 4.32it/s]
47%|████▋ | 18/38 [00:04<00:04, 4.30it/s]
50%|█████ | 19/38 [00:04<00:04, 4.30it/s]
53%|█████▎ | 20/38 [00:04<00:04, 4.30it/s]
55%|█████▌ | 21/38 [00:04<00:03, 4.30it/s]
58%|█████▊ | 22/38 [00:05<00:03, 4.30it/s]
61%|██████ | 23/38 [00:05<00:03, 4.30it/s]
63%|██████▎ | 24/38 [00:05<00:03, 4.30it/s]
66%|██████▌ | 25/38 [00:05<00:03, 4.30it/s]
68%|██████▊ | 26/38 [00:06<00:02, 4.30it/s]
71%|███████ | 27/38 [00:06<00:02, 4.30it/s]
74%|███████▎ | 28/38 [00:06<00:02, 4.30it/s]
76%|███████▋ | 29/38 [00:06<00:02, 4.31it/s]
79%|███████▉ | 30/38 [00:06<00:01, 4.30it/s]
82%|████████▏ | 31/38 [00:07<00:01, 4.30it/s]
84%|████████▍ | 32/38 [00:07<00:01, 4.30it/s]
87%|████████▋ | 33/38 [00:07<00:01, 4.30it/s]
89%|████████▉ | 34/38 [00:07<00:00, 4.29it/s]
92%|█████████▏| 35/38 [00:08<00:00, 4.30it/s]
95%|█████████▍| 36/38 [00:08<00:00, 4.29it/s]
97%|█████████▋| 37/38 [00:08<00:00, 4.29it/s]
100%|██████████| 38/38 [00:08<00:00, 4.30it/s]
100%|██████████| 38/38 [00:08<00:00, 4.31it/s]
0%| | 0/2 [00:00<?, ?it/s]
50%|█████ | 1/2 [00:00<00:00, 5.60it/s]
100%|██████████| 2/2 [00:00<00:00, 5.55it/s]
100%|██████████| 2/2 [00:00<00:00, 5.56it/s]