You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-toy-story-people:e5603fd8
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10",
{
input: {
width: 1024,
height: 1024,
prompt: "An animated TOK person",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.9,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 30
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10",
input={
"width": 1024,
"height": 1024,
"prompt": "An animated TOK person",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10",
"input": {
"width": 1024,
"height": 1024,
"prompt": "An animated TOK person",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/sdxl-toy-story-people@sha256:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="An animated TOK person"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.9' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sdxl-toy-story-people@sha256:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK person", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.015. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-03T15:27:54.823261Z",
"created_at": "2023-11-03T15:27:34.014366Z",
"data_removed": false,
"error": null,
"id": "g4f4iftbhosxpvr3za3bsrhzbu",
"input": {
"width": 1024,
"height": 1024,
"prompt": "An animated TOK person",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
},
"logs": "Using seed: 44652\nEnsuring enough disk space...\nFree disk space: 1871501414400\nDownloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar\nb'Downloaded 186 MB bytes in 5.052s (37 MB/s)\\nExtracted 186 MB in 0.057s (3.3 GB/s)\\n'\nDownloaded weights in 5.499805927276611 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> person\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.42it/s]\n 7%|▋ | 2/27 [00:00<00:07, 3.41it/s]\n 11%|█ | 3/27 [00:00<00:07, 3.41it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.40it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.40it/s]\n 22%|██▏ | 6/27 [00:01<00:06, 3.40it/s]\n 26%|██▌ | 7/27 [00:02<00:05, 3.39it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.39it/s]\n 33%|███▎ | 9/27 [00:02<00:05, 3.39it/s]\n 37%|███▋ | 10/27 [00:02<00:05, 3.39it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.38it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.38it/s]\n 48%|████▊ | 13/27 [00:03<00:04, 3.39it/s]\n 52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.38it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.38it/s]\n 63%|██████▎ | 17/27 [00:05<00:02, 3.38it/s]\n 67%|██████▋ | 18/27 [00:05<00:02, 3.38it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.38it/s]\n 74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s]\n 78%|███████▊ | 21/27 [00:06<00:01, 3.37it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s]\n 89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s]\n 93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.37it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.37it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.38it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.99it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 3.95it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.95it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.96it/s]",
"metrics": {
"predict_time": 17.156869,
"total_time": 20.808895
},
"output": [
"https://replicate.delivery/pbxt/usvwYUwOWZbRFJ5Kj05OGXAUev9wdFjHwmaqOfMRNRu5Ns0RA/out-0.png"
],
"started_at": "2023-11-03T15:27:37.666392Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/g4f4iftbhosxpvr3za3bsrhzbu",
"cancel": "https://api.replicate.com/v1/predictions/g4f4iftbhosxpvr3za3bsrhzbu/cancel"
},
"version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10"
}
Using seed: 44652
Ensuring enough disk space...
Free disk space: 1871501414400
Downloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar
b'Downloaded 186 MB bytes in 5.052s (37 MB/s)\nExtracted 186 MB in 0.057s (3.3 GB/s)\n'
Downloaded weights in 5.499805927276611 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: An animated <s0><s1> person
txt2img mode
0%| | 0/27 [00:00<?, ?it/s]
4%|▎ | 1/27 [00:00<00:07, 3.42it/s]
7%|▋ | 2/27 [00:00<00:07, 3.41it/s]
11%|█ | 3/27 [00:00<00:07, 3.41it/s]
15%|█▍ | 4/27 [00:01<00:06, 3.40it/s]
19%|█▊ | 5/27 [00:01<00:06, 3.40it/s]
22%|██▏ | 6/27 [00:01<00:06, 3.40it/s]
26%|██▌ | 7/27 [00:02<00:05, 3.39it/s]
30%|██▉ | 8/27 [00:02<00:05, 3.39it/s]
33%|███▎ | 9/27 [00:02<00:05, 3.39it/s]
37%|███▋ | 10/27 [00:02<00:05, 3.39it/s]
41%|████ | 11/27 [00:03<00:04, 3.38it/s]
44%|████▍ | 12/27 [00:03<00:04, 3.38it/s]
48%|████▊ | 13/27 [00:03<00:04, 3.39it/s]
52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s]
56%|█████▌ | 15/27 [00:04<00:03, 3.38it/s]
59%|█████▉ | 16/27 [00:04<00:03, 3.38it/s]
63%|██████▎ | 17/27 [00:05<00:02, 3.38it/s]
67%|██████▋ | 18/27 [00:05<00:02, 3.38it/s]
70%|███████ | 19/27 [00:05<00:02, 3.38it/s]
74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s]
78%|███████▊ | 21/27 [00:06<00:01, 3.37it/s]
81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s]
85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s]
89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s]
93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s]
96%|█████████▋| 26/27 [00:07<00:00, 3.37it/s]
100%|██████████| 27/27 [00:07<00:00, 3.37it/s]
100%|██████████| 27/27 [00:07<00:00, 3.38it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.99it/s]
67%|██████▋ | 2/3 [00:00<00:00, 3.95it/s]
100%|██████████| 3/3 [00:00<00:00, 3.95it/s]
100%|██████████| 3/3 [00:00<00:00, 3.96it/s]