Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
hudsongraeme /cybertruck:4cb80e2b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"hudsongraeme/cybertruck:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
{
input: {
width: 1024,
height: 1024,
prompt: "A photo of a TOK driving extremely fast off road, twilight",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.6,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"hudsongraeme/cybertruck:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
input={
"width": 1024,
"height": 1024,
"prompt": "A photo of a TOK driving extremely fast off road, twilight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.6,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of a TOK driving extremely fast off road, twilight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.6,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/hudsongraeme/cybertruck@sha256:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A photo of a TOK driving extremely fast off road, twilight"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.6' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/hudsongraeme/cybertruck@sha256:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A photo of a TOK driving extremely fast off road, twilight", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.6, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.019. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-19T04:44:57.472564Z",
"created_at": "2023-10-19T04:44:39.496140Z",
"data_removed": false,
"error": null,
"id": "ez7rob3b7327waexiqmcwrq7qe",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of a TOK driving extremely fast off road, twilight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.6,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 46920\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A photo of a <s0><s1> driving extremely fast off road, twilight\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.66it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.65it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.64it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.63it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.64it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.65it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.65it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.64it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.64it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]",
"metrics": {
"predict_time": 16.411233,
"total_time": 17.976424
},
"output": [
"https://replicate.delivery/pbxt/zXSBarRHjAZmOF28DK50UepzqILT5t8nIK2y3weziJzIZmvRA/out-0.png"
],
"started_at": "2023-10-19T04:44:41.061331Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ez7rob3b7327waexiqmcwrq7qe",
"cancel": "https://api.replicate.com/v1/predictions/ez7rob3b7327waexiqmcwrq7qe/cancel"
},
"version": "4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9"
}
Using seed: 46920
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of a <s0><s1> driving extremely fast off road, twilight
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.66it/s]
4%|▍ | 2/50 [00:00<00:13, 3.65it/s]
6%|▌ | 3/50 [00:00<00:12, 3.64it/s]
8%|▊ | 4/50 [00:01<00:12, 3.63it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:10, 3.65it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.64it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]
50%|█████ | 25/50 [00:06<00:06, 3.65it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.65it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]