Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
hudsongraeme /cybertruck:4cb80e2b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"hudsongraeme/cybertruck:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
{
input: {
image: "https://replicate.delivery/pbxt/Jj0cCRNS9EyPSZXLyACPoZ4nB3pmKfd0wK6czgkwVk3EGq6J/empty-autumn-road-with-trees-in-a-row-on-the-edges-photo.jpg",
width: 1024,
height: 1024,
prompt: "A photo of TOK parked near autumn trees, bright",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.9,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"hudsongraeme/cybertruck:4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
input={
"image": "https://replicate.delivery/pbxt/Jj0cCRNS9EyPSZXLyACPoZ4nB3pmKfd0wK6czgkwVk3EGq6J/empty-autumn-road-with-trees-in-a-row-on-the-edges-photo.jpg",
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK parked near autumn trees, bright",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.9,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run hudsongraeme/cybertruck using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9",
"input": {
"image": "https://replicate.delivery/pbxt/Jj0cCRNS9EyPSZXLyACPoZ4nB3pmKfd0wK6czgkwVk3EGq6J/empty-autumn-road-with-trees-in-a-row-on-the-edges-photo.jpg",
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK parked near autumn trees, bright",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.9,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-19T05:26:24.598509Z",
"created_at": "2023-10-19T05:25:31.421448Z",
"data_removed": false,
"error": null,
"id": "oytbs4tbvyzcr4a7tlacbupkve",
"input": {
"image": "https://replicate.delivery/pbxt/Jj0cCRNS9EyPSZXLyACPoZ4nB3pmKfd0wK6czgkwVk3EGq6J/empty-autumn-road-with-trees-in-a-row-on-the-edges-photo.jpg",
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK parked near autumn trees, bright",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.9,
"num_inference_steps": 50
},
"logs": "Using seed: 60623\nEnsuring enough disk space...\nFree disk space: 2073072680960\nDownloading weights: https://pbxt.replicate.delivery/LlSIASeBycWpOS1KVqfe31ZjIKdk7Ho3RblERn4k3PgfGXeNC/trained_model.tar\nb'Downloaded 186 MB bytes in 0.295s (630 MB/s)\\nExtracted 186 MB in 0.074s (2.5 GB/s)\\n'\nDownloaded weights in 0.5329921245574951 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A photo of <s0><s1> parked near autumn trees, bright\nimg2img mode\n/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)\nreturn F.conv2d(input, weight, bias, self.stride,\n 0%| | 0/45 [00:00<?, ?it/s]\n 2%|▏ | 1/45 [00:00<00:09, 4.53it/s]\n 4%|▍ | 2/45 [00:00<00:09, 4.72it/s]\n 7%|▋ | 3/45 [00:00<00:08, 4.80it/s]\n 9%|▉ | 4/45 [00:00<00:08, 4.83it/s]\n 11%|█ | 5/45 [00:01<00:08, 4.85it/s]\n 13%|█▎ | 6/45 [00:01<00:08, 4.86it/s]\n 16%|█▌ | 7/45 [00:01<00:07, 4.87it/s]\n 18%|█▊ | 8/45 [00:01<00:07, 4.87it/s]\n 20%|██ | 9/45 [00:01<00:07, 4.87it/s]\n 22%|██▏ | 10/45 [00:02<00:07, 4.87it/s]\n 24%|██▍ | 11/45 [00:02<00:06, 4.87it/s]\n 27%|██▋ | 12/45 [00:02<00:06, 4.87it/s]\n 29%|██▉ | 13/45 [00:02<00:06, 4.87it/s]\n 31%|███ | 14/45 [00:02<00:06, 4.88it/s]\n 33%|███▎ | 15/45 [00:03<00:06, 4.88it/s]\n 36%|███▌ | 16/45 [00:03<00:05, 4.88it/s]\n 38%|███▊ | 17/45 [00:03<00:05, 4.88it/s]\n 40%|████ | 18/45 [00:03<00:05, 4.88it/s]\n 42%|████▏ | 19/45 [00:03<00:05, 4.88it/s]\n 44%|████▍ | 20/45 [00:04<00:05, 4.88it/s]\n 47%|████▋ | 21/45 [00:04<00:04, 4.87it/s]\n 49%|████▉ | 22/45 [00:04<00:04, 4.87it/s]\n 51%|█████ | 23/45 [00:04<00:04, 4.87it/s]\n 53%|█████▎ | 24/45 [00:04<00:04, 4.86it/s]\n 56%|█████▌ | 25/45 [00:05<00:04, 4.86it/s]\n 58%|█████▊ | 26/45 [00:05<00:03, 4.86it/s]\n 60%|██████ | 27/45 [00:05<00:03, 4.86it/s]\n 62%|██████▏ | 28/45 [00:05<00:03, 4.86it/s]\n 64%|██████▍ | 29/45 [00:05<00:03, 4.87it/s]\n 67%|██████▋ | 30/45 [00:06<00:03, 4.87it/s]\n 69%|██████▉ | 31/45 [00:06<00:02, 4.87it/s]\n 71%|███████ | 32/45 [00:06<00:02, 4.87it/s]\n 73%|███████▎ | 33/45 [00:06<00:02, 4.87it/s]\n 76%|███████▌ | 34/45 [00:06<00:02, 4.86it/s]\n 78%|███████▊ | 35/45 [00:07<00:02, 4.86it/s]\n 80%|████████ | 36/45 [00:07<00:01, 4.87it/s]\n 82%|████████▏ | 37/45 [00:07<00:01, 4.87it/s]\n 84%|████████▍ | 38/45 [00:07<00:01, 4.86it/s]\n 87%|████████▋ | 39/45 [00:08<00:01, 4.86it/s]\n 89%|████████▉ | 40/45 [00:08<00:01, 4.86it/s]\n 91%|█████████ | 41/45 [00:08<00:00, 4.86it/s]\n 93%|█████████▎| 42/45 [00:08<00:00, 4.86it/s]\n 96%|█████████▌| 43/45 [00:08<00:00, 4.86it/s]\n 98%|█████████▊| 44/45 [00:09<00:00, 4.86it/s]\n100%|██████████| 45/45 [00:09<00:00, 4.86it/s]\n100%|██████████| 45/45 [00:09<00:00, 4.86it/s]",
"metrics": {
"predict_time": 19.455914,
"total_time": 53.177061
},
"output": [
"https://replicate.delivery/pbxt/fZZVI6wfNdp0TkfZI9fphfjCqZbOGY16fXzZNSTY77ZHAw5bE/out-0.png"
],
"started_at": "2023-10-19T05:26:05.142595Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/oytbs4tbvyzcr4a7tlacbupkve",
"cancel": "https://api.replicate.com/v1/predictions/oytbs4tbvyzcr4a7tlacbupkve/cancel"
},
"version": "4cb80e2be47c463f65976fdad5f90179e5c613728a7ab30f723dd9c51a0a1ec9"
}
Using seed: 60623
Ensuring enough disk space...
Free disk space: 2073072680960
Downloading weights: https://pbxt.replicate.delivery/LlSIASeBycWpOS1KVqfe31ZjIKdk7Ho3RblERn4k3PgfGXeNC/trained_model.tar
b'Downloaded 186 MB bytes in 0.295s (630 MB/s)\nExtracted 186 MB in 0.074s (2.5 GB/s)\n'
Downloaded weights in 0.5329921245574951 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of <s0><s1> parked near autumn trees, bright
img2img mode
/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)
return F.conv2d(input, weight, bias, self.stride,
0%| | 0/45 [00:00<?, ?it/s]
2%|▏ | 1/45 [00:00<00:09, 4.53it/s]
4%|▍ | 2/45 [00:00<00:09, 4.72it/s]
7%|▋ | 3/45 [00:00<00:08, 4.80it/s]
9%|▉ | 4/45 [00:00<00:08, 4.83it/s]
11%|█ | 5/45 [00:01<00:08, 4.85it/s]
13%|█▎ | 6/45 [00:01<00:08, 4.86it/s]
16%|█▌ | 7/45 [00:01<00:07, 4.87it/s]
18%|█▊ | 8/45 [00:01<00:07, 4.87it/s]
20%|██ | 9/45 [00:01<00:07, 4.87it/s]
22%|██▏ | 10/45 [00:02<00:07, 4.87it/s]
24%|██▍ | 11/45 [00:02<00:06, 4.87it/s]
27%|██▋ | 12/45 [00:02<00:06, 4.87it/s]
29%|██▉ | 13/45 [00:02<00:06, 4.87it/s]
31%|███ | 14/45 [00:02<00:06, 4.88it/s]
33%|███▎ | 15/45 [00:03<00:06, 4.88it/s]
36%|███▌ | 16/45 [00:03<00:05, 4.88it/s]
38%|███▊ | 17/45 [00:03<00:05, 4.88it/s]
40%|████ | 18/45 [00:03<00:05, 4.88it/s]
42%|████▏ | 19/45 [00:03<00:05, 4.88it/s]
44%|████▍ | 20/45 [00:04<00:05, 4.88it/s]
47%|████▋ | 21/45 [00:04<00:04, 4.87it/s]
49%|████▉ | 22/45 [00:04<00:04, 4.87it/s]
51%|█████ | 23/45 [00:04<00:04, 4.87it/s]
53%|█████▎ | 24/45 [00:04<00:04, 4.86it/s]
56%|█████▌ | 25/45 [00:05<00:04, 4.86it/s]
58%|█████▊ | 26/45 [00:05<00:03, 4.86it/s]
60%|██████ | 27/45 [00:05<00:03, 4.86it/s]
62%|██████▏ | 28/45 [00:05<00:03, 4.86it/s]
64%|██████▍ | 29/45 [00:05<00:03, 4.87it/s]
67%|██████▋ | 30/45 [00:06<00:03, 4.87it/s]
69%|██████▉ | 31/45 [00:06<00:02, 4.87it/s]
71%|███████ | 32/45 [00:06<00:02, 4.87it/s]
73%|███████▎ | 33/45 [00:06<00:02, 4.87it/s]
76%|███████▌ | 34/45 [00:06<00:02, 4.86it/s]
78%|███████▊ | 35/45 [00:07<00:02, 4.86it/s]
80%|████████ | 36/45 [00:07<00:01, 4.87it/s]
82%|████████▏ | 37/45 [00:07<00:01, 4.87it/s]
84%|████████▍ | 38/45 [00:07<00:01, 4.86it/s]
87%|████████▋ | 39/45 [00:08<00:01, 4.86it/s]
89%|████████▉ | 40/45 [00:08<00:01, 4.86it/s]
91%|█████████ | 41/45 [00:08<00:00, 4.86it/s]
93%|█████████▎| 42/45 [00:08<00:00, 4.86it/s]
96%|█████████▌| 43/45 [00:08<00:00, 4.86it/s]
98%|█████████▊| 44/45 [00:09<00:00, 4.86it/s]
100%|██████████| 45/45 [00:09<00:00, 4.86it/s]
100%|██████████| 45/45 [00:09<00:00, 4.86it/s]