You're looking at a specific version of this model. Jump to the model overview.
jarvis-labs2024 /flux-appleseed:0aecb9fd
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jarvis-labs2024/flux-appleseed using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jarvis-labs2024/flux-appleseed:0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec",
{
input: {
model: "dev",
prompt: "a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jarvis-labs2024/flux-appleseed using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jarvis-labs2024/flux-appleseed:0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec",
input={
"model": "dev",
"prompt": "a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jarvis-labs2024/flux-appleseed using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "jarvis-labs2024/flux-appleseed:0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec",
"input": {
"model": "dev",
"prompt": "a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jarvis-labs2024/flux-appleseed@sha256:0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec \
-i 'model="dev"' \
-i 'prompt="a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jarvis-labs2024/flux-appleseed@sha256:0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-09-29T03:24:32.194590Z",
"created_at": "2024-09-29T03:23:46.185000Z",
"data_removed": false,
"error": null,
"id": "jwrs9da2h5rj60cj7f79267h68",
"input": {
"model": "dev",
"prompt": "a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "Using seed: 8107\nPrompt: a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED\n[!] txt2img mode\nUsing dev model\nfree=4311250100224\nDownloading weights\n2024-09-29T03:24:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp3usijkzo/weights url=https://replicate.delivery/yhqm/6v6JOdXtArJZEBbsjPoYSC6lezM2Is12eghIoQBhlnWNI0UTA/trained_model.tar\n2024-09-29T03:24:12Z | INFO | [ Complete ] dest=/tmp/tmp3usijkzo/weights size=\"172 MB\" total_elapsed=1.413s url=https://replicate.delivery/yhqm/6v6JOdXtArJZEBbsjPoYSC6lezM2Is12eghIoQBhlnWNI0UTA/trained_model.tar\nDownloaded weights in 1.45s\nLoaded LoRAs in 2.19s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:22, 1.20it/s]\n 7%|▋ | 2/28 [00:01<00:16, 1.54it/s]\n 11%|█ | 3/28 [00:01<00:16, 1.55it/s]\n 14%|█▍ | 4/28 [00:02<00:15, 1.55it/s]\n 18%|█▊ | 5/28 [00:03<00:14, 1.55it/s]\n 21%|██▏ | 6/28 [00:03<00:14, 1.55it/s]\n 25%|██▌ | 7/28 [00:04<00:13, 1.55it/s]\n 29%|██▊ | 8/28 [00:05<00:12, 1.55it/s]\n 32%|███▏ | 9/28 [00:05<00:12, 1.55it/s]\n 36%|███▌ | 10/28 [00:06<00:11, 1.55it/s]\n 39%|███▉ | 11/28 [00:07<00:10, 1.55it/s]\n 43%|████▎ | 12/28 [00:07<00:10, 1.55it/s]\n 46%|████▋ | 13/28 [00:08<00:09, 1.55it/s]\n 50%|█████ | 14/28 [00:09<00:09, 1.55it/s]\n 54%|█████▎ | 15/28 [00:09<00:08, 1.55it/s]\n 57%|█████▋ | 16/28 [00:10<00:07, 1.55it/s]\n 61%|██████ | 17/28 [00:11<00:07, 1.55it/s]\n 64%|██████▍ | 18/28 [00:11<00:06, 1.55it/s]\n 68%|██████▊ | 19/28 [00:12<00:05, 1.55it/s]\n 71%|███████▏ | 20/28 [00:12<00:05, 1.55it/s]\n 75%|███████▌ | 21/28 [00:13<00:04, 1.55it/s]\n 79%|███████▊ | 22/28 [00:14<00:03, 1.55it/s]\n 82%|████████▏ | 23/28 [00:14<00:03, 1.55it/s]\n 86%|████████▌ | 24/28 [00:15<00:02, 1.55it/s]\n 89%|████████▉ | 25/28 [00:16<00:01, 1.55it/s]\n 93%|█████████▎| 26/28 [00:16<00:01, 1.55it/s]\n 96%|█████████▋| 27/28 [00:17<00:00, 1.55it/s]\n100%|██████████| 28/28 [00:18<00:00, 1.55it/s]\n100%|██████████| 28/28 [00:18<00:00, 1.55it/s]",
"metrics": {
"predict_time": 21.558591051,
"total_time": 46.00959
},
"output": [
"https://replicate.delivery/yhqm/zRUIKjTRb3JbFNP2PamEmQoYxIezMkyegn6593E7HBxwpnhTA/out-0.webp"
],
"started_at": "2024-09-29T03:24:10.635999Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/jwrs9da2h5rj60cj7f79267h68",
"cancel": "https://api.replicate.com/v1/predictions/jwrs9da2h5rj60cj7f79267h68/cancel"
},
"version": "0aecb9fdfb17a2517112cc70b4a1898aa7791da84a010419782ce7043481edec"
}
Using seed: 8107
Prompt: a Asian girl opening a door to pandoras box but its a door way, door opening, standing, crazy lightings coming out of door, retro anime style, high tech cyber punk style, back facing , APPLESEED
[!] txt2img mode
Using dev model
free=4311250100224
Downloading weights
2024-09-29T03:24:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp3usijkzo/weights url=https://replicate.delivery/yhqm/6v6JOdXtArJZEBbsjPoYSC6lezM2Is12eghIoQBhlnWNI0UTA/trained_model.tar
2024-09-29T03:24:12Z | INFO | [ Complete ] dest=/tmp/tmp3usijkzo/weights size="172 MB" total_elapsed=1.413s url=https://replicate.delivery/yhqm/6v6JOdXtArJZEBbsjPoYSC6lezM2Is12eghIoQBhlnWNI0UTA/trained_model.tar
Downloaded weights in 1.45s
Loaded LoRAs in 2.19s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:22, 1.20it/s]
7%|▋ | 2/28 [00:01<00:16, 1.54it/s]
11%|█ | 3/28 [00:01<00:16, 1.55it/s]
14%|█▍ | 4/28 [00:02<00:15, 1.55it/s]
18%|█▊ | 5/28 [00:03<00:14, 1.55it/s]
21%|██▏ | 6/28 [00:03<00:14, 1.55it/s]
25%|██▌ | 7/28 [00:04<00:13, 1.55it/s]
29%|██▊ | 8/28 [00:05<00:12, 1.55it/s]
32%|███▏ | 9/28 [00:05<00:12, 1.55it/s]
36%|███▌ | 10/28 [00:06<00:11, 1.55it/s]
39%|███▉ | 11/28 [00:07<00:10, 1.55it/s]
43%|████▎ | 12/28 [00:07<00:10, 1.55it/s]
46%|████▋ | 13/28 [00:08<00:09, 1.55it/s]
50%|█████ | 14/28 [00:09<00:09, 1.55it/s]
54%|█████▎ | 15/28 [00:09<00:08, 1.55it/s]
57%|█████▋ | 16/28 [00:10<00:07, 1.55it/s]
61%|██████ | 17/28 [00:11<00:07, 1.55it/s]
64%|██████▍ | 18/28 [00:11<00:06, 1.55it/s]
68%|██████▊ | 19/28 [00:12<00:05, 1.55it/s]
71%|███████▏ | 20/28 [00:12<00:05, 1.55it/s]
75%|███████▌ | 21/28 [00:13<00:04, 1.55it/s]
79%|███████▊ | 22/28 [00:14<00:03, 1.55it/s]
82%|████████▏ | 23/28 [00:14<00:03, 1.55it/s]
86%|████████▌ | 24/28 [00:15<00:02, 1.55it/s]
89%|████████▉ | 25/28 [00:16<00:01, 1.55it/s]
93%|█████████▎| 26/28 [00:16<00:01, 1.55it/s]
96%|█████████▋| 27/28 [00:17<00:00, 1.55it/s]
100%|██████████| 28/28 [00:18<00:00, 1.55it/s]
100%|██████████| 28/28 [00:18<00:00, 1.55it/s]