Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
justmalhar /flux-bento-grids:dd8ee5b3
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run justmalhar/flux-bento-grids using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"justmalhar/flux-bento-grids:dd8ee5b34e7291febaf3c2911e462e45c69130c9ce4745d101e65d02384f0dd2",
{
input: {
model: "dev",
prompt: "a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "16:9",
output_format: "png",
guidance_scale: 3.5,
output_quality: 100,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run justmalhar/flux-bento-grids using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"justmalhar/flux-bento-grids:dd8ee5b34e7291febaf3c2911e462e45c69130c9ce4745d101e65d02384f0dd2",
input={
"model": "dev",
"prompt": "a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run justmalhar/flux-bento-grids using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "justmalhar/flux-bento-grids:dd8ee5b34e7291febaf3c2911e462e45c69130c9ce4745d101e65d02384f0dd2",
"input": {
"model": "dev",
"prompt": "a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-11-24T18:22:45.903761Z",
"created_at": "2024-11-24T18:21:41.714000Z",
"data_removed": false,
"error": null,
"id": "anr3xs3nt9rma0ckbxmb5xvxp0",
"input": {
"model": "dev",
"prompt": "a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”",
"lora_scale": 1,
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
},
"logs": "Using seed: 4187\nPrompt: a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”\n[!] txt2img mode\nUsing dev model\nfree=29478717456384\nDownloading weights\n2024-11-24T18:21:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpqkm5u6gu/weights url=https://replicate.delivery/xezq/yf4UHe4sebWzFIO3gxIzIPhagdrSRA9TDzxtY8JiypwVajonA/trained_model.tar\n2024-11-24T18:21:44Z | INFO | [ Complete ] dest=/tmp/tmpqkm5u6gu/weights size=\"172 MB\" total_elapsed=2.741s url=https://replicate.delivery/xezq/yf4UHe4sebWzFIO3gxIzIPhagdrSRA9TDzxtY8JiypwVajonA/trained_model.tar\nDownloaded weights in 2.76s\nLoaded LoRAs in 3.37s\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:58, 1.19s/it]\n 4%|▍ | 2/50 [00:02<00:51, 1.07s/it]\n 6%|▌ | 3/50 [00:03<00:52, 1.13s/it]\n 8%|▊ | 4/50 [00:04<00:52, 1.15s/it]\n 10%|█ | 5/50 [00:05<00:52, 1.17s/it]\n 12%|█▏ | 6/50 [00:06<00:51, 1.17s/it]\n 14%|█▍ | 7/50 [00:08<00:50, 1.18s/it]\n 16%|█▌ | 8/50 [00:09<00:49, 1.18s/it]\n 18%|█▊ | 9/50 [00:10<00:48, 1.19s/it]\n 20%|██ | 10/50 [00:11<00:47, 1.19s/it]\n 22%|██▏ | 11/50 [00:12<00:46, 1.19s/it]\n 24%|██▍ | 12/50 [00:14<00:45, 1.19s/it]\n 26%|██▌ | 13/50 [00:15<00:43, 1.19s/it]\n 28%|██▊ | 14/50 [00:16<00:42, 1.19s/it]\n 30%|███ | 15/50 [00:17<00:41, 1.19s/it]\n 32%|███▏ | 16/50 [00:18<00:40, 1.19s/it]\n 34%|███▍ | 17/50 [00:20<00:39, 1.19s/it]\n 36%|███▌ | 18/50 [00:21<00:38, 1.19s/it]\n 38%|███▊ | 19/50 [00:22<00:36, 1.19s/it]\n 40%|████ | 20/50 [00:23<00:35, 1.19s/it]\n 42%|████▏ | 21/50 [00:24<00:34, 1.19s/it]\n 44%|████▍ | 22/50 [00:25<00:33, 1.19s/it]\n 46%|████▌ | 23/50 [00:27<00:32, 1.19s/it]\n 48%|████▊ | 24/50 [00:28<00:30, 1.19s/it]\n 50%|█████ | 25/50 [00:29<00:29, 1.19s/it]\n 52%|█████▏ | 26/50 [00:30<00:28, 1.19s/it]\n 54%|█████▍ | 27/50 [00:31<00:27, 1.19s/it]\n 56%|█████▌ | 28/50 [00:33<00:26, 1.19s/it]\n 58%|█████▊ | 29/50 [00:34<00:25, 1.19s/it]\n 60%|██████ | 30/50 [00:35<00:23, 1.19s/it]\n 62%|██████▏ | 31/50 [00:36<00:22, 1.19s/it]\n 64%|██████▍ | 32/50 [00:37<00:21, 1.19s/it]\n 66%|██████▌ | 33/50 [00:39<00:20, 1.19s/it]\n 68%|██████▊ | 34/50 [00:40<00:19, 1.19s/it]\n 70%|███████ | 35/50 [00:41<00:17, 1.19s/it]\n 72%|███████▏ | 36/50 [00:42<00:16, 1.19s/it]\n 74%|███████▍ | 37/50 [00:43<00:15, 1.19s/it]\n 76%|███████▌ | 38/50 [00:45<00:14, 1.19s/it]\n 78%|███████▊ | 39/50 [00:46<00:13, 1.19s/it]\n 80%|████████ | 40/50 [00:47<00:11, 1.19s/it]\n 82%|████████▏ | 41/50 [00:48<00:10, 1.19s/it]\n 84%|████████▍ | 42/50 [00:49<00:09, 1.19s/it]\n 86%|████████▌ | 43/50 [00:50<00:08, 1.19s/it]\n 88%|████████▊ | 44/50 [00:52<00:07, 1.19s/it]\n 90%|█████████ | 45/50 [00:53<00:05, 1.19s/it]\n 92%|█████████▏| 46/50 [00:54<00:04, 1.19s/it]\n 94%|█████████▍| 47/50 [00:55<00:03, 1.19s/it]\n 96%|█████████▌| 48/50 [00:56<00:02, 1.19s/it]\n 98%|█████████▊| 49/50 [00:58<00:01, 1.19s/it]\n100%|██████████| 50/50 [00:59<00:00, 1.19s/it]\n100%|██████████| 50/50 [00:59<00:00, 1.19s/it]",
"metrics": {
"predict_time": 64.068740913,
"total_time": 64.189761
},
"output": [
"https://replicate.delivery/xezq/N9eq1PGbgBU8ZqTO0UaxvfbEe7V2tKJYWvXsdzogFEBrHkonA/out-0.png",
"https://replicate.delivery/xezq/7geRwQE9X82BfU9AqKSA0qEzySlqRcYA14gw8RYeyWLqHkonA/out-1.png",
"https://replicate.delivery/xezq/HYEngoefzJnrxEuYuMkvL0qRYvDdSERTyKva7jTyIAg1DS0TA/out-2.png",
"https://replicate.delivery/xezq/LlJqKmbPr8L1JlnJfaMqi9OzGGQuUeOr4jVf4Fx5pH5rHkonA/out-3.png"
],
"started_at": "2024-11-24T18:21:41.835020Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-ezux6twe4on7sfxkkj27gevfndabnc3mpggkyencludlfwc2iqpq",
"get": "https://api.replicate.com/v1/predictions/anr3xs3nt9rma0ckbxmb5xvxp0",
"cancel": "https://api.replicate.com/v1/predictions/anr3xs3nt9rma0ckbxmb5xvxp0/cancel"
},
"version": "dd8ee5b34e7291febaf3c2911e462e45c69130c9ce4745d101e65d02384f0dd2"
}
Using seed: 4187
Prompt: a highly polished website design in BENTOGRID style, bento grid design for a coding platform featuring text and elements like ‘Code,’ ‘Dev 3.0,’ ‘Learn Programming,’ ‘Build Projects,’ ‘Debug Tutorials,’ ‘Master Algorithms,’ ‘Collaborate Now,’ ‘Dev Hub 3.0,’ ‘Write Code,’ ‘Explore Challenges,’ and ‘Deploy Smart Solutions.’”
[!] txt2img mode
Using dev model
free=29478717456384
Downloading weights
2024-11-24T18:21:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpqkm5u6gu/weights url=https://replicate.delivery/xezq/yf4UHe4sebWzFIO3gxIzIPhagdrSRA9TDzxtY8JiypwVajonA/trained_model.tar
2024-11-24T18:21:44Z | INFO | [ Complete ] dest=/tmp/tmpqkm5u6gu/weights size="172 MB" total_elapsed=2.741s url=https://replicate.delivery/xezq/yf4UHe4sebWzFIO3gxIzIPhagdrSRA9TDzxtY8JiypwVajonA/trained_model.tar
Downloaded weights in 2.76s
Loaded LoRAs in 3.37s
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<00:58, 1.19s/it]
4%|▍ | 2/50 [00:02<00:51, 1.07s/it]
6%|▌ | 3/50 [00:03<00:52, 1.13s/it]
8%|▊ | 4/50 [00:04<00:52, 1.15s/it]
10%|█ | 5/50 [00:05<00:52, 1.17s/it]
12%|█▏ | 6/50 [00:06<00:51, 1.17s/it]
14%|█▍ | 7/50 [00:08<00:50, 1.18s/it]
16%|█▌ | 8/50 [00:09<00:49, 1.18s/it]
18%|█▊ | 9/50 [00:10<00:48, 1.19s/it]
20%|██ | 10/50 [00:11<00:47, 1.19s/it]
22%|██▏ | 11/50 [00:12<00:46, 1.19s/it]
24%|██▍ | 12/50 [00:14<00:45, 1.19s/it]
26%|██▌ | 13/50 [00:15<00:43, 1.19s/it]
28%|██▊ | 14/50 [00:16<00:42, 1.19s/it]
30%|███ | 15/50 [00:17<00:41, 1.19s/it]
32%|███▏ | 16/50 [00:18<00:40, 1.19s/it]
34%|███▍ | 17/50 [00:20<00:39, 1.19s/it]
36%|███▌ | 18/50 [00:21<00:38, 1.19s/it]
38%|███▊ | 19/50 [00:22<00:36, 1.19s/it]
40%|████ | 20/50 [00:23<00:35, 1.19s/it]
42%|████▏ | 21/50 [00:24<00:34, 1.19s/it]
44%|████▍ | 22/50 [00:25<00:33, 1.19s/it]
46%|████▌ | 23/50 [00:27<00:32, 1.19s/it]
48%|████▊ | 24/50 [00:28<00:30, 1.19s/it]
50%|█████ | 25/50 [00:29<00:29, 1.19s/it]
52%|█████▏ | 26/50 [00:30<00:28, 1.19s/it]
54%|█████▍ | 27/50 [00:31<00:27, 1.19s/it]
56%|█████▌ | 28/50 [00:33<00:26, 1.19s/it]
58%|█████▊ | 29/50 [00:34<00:25, 1.19s/it]
60%|██████ | 30/50 [00:35<00:23, 1.19s/it]
62%|██████▏ | 31/50 [00:36<00:22, 1.19s/it]
64%|██████▍ | 32/50 [00:37<00:21, 1.19s/it]
66%|██████▌ | 33/50 [00:39<00:20, 1.19s/it]
68%|██████▊ | 34/50 [00:40<00:19, 1.19s/it]
70%|███████ | 35/50 [00:41<00:17, 1.19s/it]
72%|███████▏ | 36/50 [00:42<00:16, 1.19s/it]
74%|███████▍ | 37/50 [00:43<00:15, 1.19s/it]
76%|███████▌ | 38/50 [00:45<00:14, 1.19s/it]
78%|███████▊ | 39/50 [00:46<00:13, 1.19s/it]
80%|████████ | 40/50 [00:47<00:11, 1.19s/it]
82%|████████▏ | 41/50 [00:48<00:10, 1.19s/it]
84%|████████▍ | 42/50 [00:49<00:09, 1.19s/it]
86%|████████▌ | 43/50 [00:50<00:08, 1.19s/it]
88%|████████▊ | 44/50 [00:52<00:07, 1.19s/it]
90%|█████████ | 45/50 [00:53<00:05, 1.19s/it]
92%|█████████▏| 46/50 [00:54<00:04, 1.19s/it]
94%|█████████▍| 47/50 [00:55<00:03, 1.19s/it]
96%|█████████▌| 48/50 [00:56<00:02, 1.19s/it]
98%|█████████▊| 49/50 [00:58<00:01, 1.19s/it]
100%|██████████| 50/50 [00:59<00:00, 1.19s/it]
100%|██████████| 50/50 [00:59<00:00, 1.19s/it]