You're looking at a specific version of this model. Jump to the model overview.
laion-ai /laionide-v3:153af311
This version has been disabled because it consistently fails to complete setup.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run laion-ai/laionide-v3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"laion-ai/laionide-v3:153af311cc39000fee1effcee0acbd5d954967193a5ab56368ffcd4766781de2",
{
input: {
seed: 0,
prompt: "The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card",
side_x: 64,
side_y: 64,
batch_size: 3,
upsample_temp: 0.998,
guidance_scale: 3,
upsample_stage: true,
timestep_respacing: "25",
sr_timestep_respacing: "27"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run laion-ai/laionide-v3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"laion-ai/laionide-v3:153af311cc39000fee1effcee0acbd5d954967193a5ab56368ffcd4766781de2",
input={
"seed": 0,
"prompt": "The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card",
"side_x": 64,
"side_y": 64,
"batch_size": 3,
"upsample_temp": 0.998,
"guidance_scale": 3,
"upsample_stage": True,
"timestep_respacing": "25",
"sr_timestep_respacing": "27"
}
)
# The laion-ai/laionide-v3 model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/laion-ai/laionide-v3/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run laion-ai/laionide-v3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "153af311cc39000fee1effcee0acbd5d954967193a5ab56368ffcd4766781de2",
"input": {
"seed": 0,
"prompt": "The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card",
"side_x": 64,
"side_y": 64,
"batch_size": 3,
"upsample_temp": 0.998,
"guidance_scale": 3,
"upsample_stage": true,
"timestep_respacing": "25",
"sr_timestep_respacing": "27"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/laion-ai/laionide-v3@sha256:153af311cc39000fee1effcee0acbd5d954967193a5ab56368ffcd4766781de2 \
-i 'seed=0' \
-i 'prompt="The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card"' \
-i 'side_x=64' \
-i 'side_y=64' \
-i 'batch_size=3' \
-i 'upsample_temp=0.998' \
-i 'guidance_scale=3' \
-i 'upsample_stage=true' \
-i 'timestep_respacing="25"' \
-i 'sr_timestep_respacing="27"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/laion-ai/laionide-v3@sha256:153af311cc39000fee1effcee0acbd5d954967193a5ab56368ffcd4766781de2
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 0, "prompt": "The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card", "side_x": 64, "side_y": 64, "batch_size": 3, "upsample_temp": 0.998, "guidance_scale": 3, "upsample_stage": true, "timestep_respacing": "25", "sr_timestep_respacing": "27" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-02-25T16:20:55.080250Z",
"created_at": "2022-02-25T16:20:18.982110Z",
"data_removed": false,
"error": null,
"id": "zheef7k26fhytoxwz7ceri2744",
"input": {
"prompt": "The Lovers demon skull werewolf tentacle tarot card | Tarot card on artstation | eldritch card",
"side_x": 64,
"side_y": 64,
"batch_size": 3,
"upsample_temp": 0.998,
"guidance_scale": 3,
"upsample_stage": true,
"timestep_respacing": "25",
"sr_timestep_respacing": "27"
},
"logs": "Generating 64x64 samples with 25 timesteps using GLIDE-base-64px...\n\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:17, 1.27it/s]\n 9%|▊ | 2/23 [00:01<00:15, 1.34it/s]\n 13%|█▎ | 3/23 [00:02<00:14, 1.36it/s]\n 17%|█▋ | 4/23 [00:02<00:09, 1.93it/s]\n 22%|██▏ | 5/23 [00:02<00:07, 2.52it/s]\n 26%|██▌ | 6/23 [00:02<00:05, 3.09it/s]\n 30%|███ | 7/23 [00:02<00:04, 3.61it/s]\n 35%|███▍ | 8/23 [00:03<00:03, 4.06it/s]\n 39%|███▉ | 9/23 [00:03<00:03, 4.42it/s]\n 43%|████▎ | 10/23 [00:03<00:02, 4.72it/s]\n 48%|████▊ | 11/23 [00:03<00:02, 4.94it/s]\n 52%|█████▏ | 12/23 [00:03<00:02, 5.09it/s]\n 57%|█████▋ | 13/23 [00:04<00:01, 5.22it/s]\n 61%|██████ | 14/23 [00:04<00:01, 5.31it/s]\n 65%|██████▌ | 15/23 [00:04<00:01, 5.36it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 5.39it/s]\n 74%|███████▍ | 17/23 [00:04<00:01, 5.42it/s]\n 78%|███████▊ | 18/23 [00:04<00:00, 5.43it/s]\n 83%|████████▎ | 19/23 [00:05<00:00, 5.46it/s]\n 87%|████████▋ | 20/23 [00:05<00:00, 5.46it/s]\n 91%|█████████▏| 21/23 [00:05<00:00, 5.47it/s]\n 96%|█████████▌| 22/23 [00:05<00:00, 5.47it/s]\n100%|██████████| 23/23 [00:05<00:00, 5.46it/s]\n100%|██████████| 23/23 [00:05<00:00, 3.92it/s]\nUpsampling outputs from GLIDE-base 64x64 to 256x256 using 27 timesteps...\n\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:01<00:47, 1.97s/it]\n 8%|▊ | 2/25 [00:03<00:45, 1.96s/it]\n 12%|█▏ | 3/25 [00:05<00:43, 1.96s/it]\n 16%|█▌ | 4/25 [00:06<00:28, 1.38s/it]\n 20%|██ | 5/25 [00:06<00:21, 1.06s/it]\n 24%|██▍ | 6/25 [00:07<00:16, 1.15it/s]\n 28%|██▊ | 7/25 [00:07<00:13, 1.34it/s]\n 32%|███▏ | 8/25 [00:08<00:11, 1.50it/s]\n 36%|███▌ | 9/25 [00:08<00:09, 1.63it/s]\n 40%|████ | 10/25 [00:09<00:08, 1.73it/s]\n 44%|████▍ | 11/25 [00:09<00:07, 1.81it/s]\n 48%|████▊ | 12/25 [00:10<00:06, 1.86it/s]\n 52%|█████▏ | 13/25 [00:10<00:06, 1.90it/s]\n 56%|█████▌ | 14/25 [00:11<00:05, 1.94it/s]\n 60%|██████ | 15/25 [00:11<00:05, 1.96it/s]\n 64%|██████▍ | 16/25 [00:12<00:04, 1.97it/s]\n 68%|██████▊ | 17/25 [00:12<00:04, 1.98it/s]\n 72%|███████▏ | 18/25 [00:13<00:03, 1.99it/s]\n 76%|███████▌ | 19/25 [00:13<00:03, 1.99it/s]\n 80%|████████ | 20/25 [00:14<00:02, 1.99it/s]\n 84%|████████▍ | 21/25 [00:14<00:02, 2.00it/s]\n 88%|████████▊ | 22/25 [00:15<00:01, 1.99it/s]\n 92%|█████████▏| 23/25 [00:15<00:01, 1.99it/s]\n 96%|█████████▌| 24/25 [00:16<00:00, 2.00it/s]\n100%|██████████| 25/25 [00:16<00:00, 2.00it/s]\n100%|██████████| 25/25 [00:16<00:00, 1.49it/s]",
"metrics": {
"predict_time": 35.933512,
"total_time": 36.09814
},
"output": [
{
"file": "https://replicate.delivery/mgxm/4b4137a8-0dab-4c71-82ed-ef42219717da/upsample_predictions.png"
}
],
"started_at": "2022-02-25T16:20:19.146738Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/zheef7k26fhytoxwz7ceri2744",
"cancel": "https://api.replicate.com/v1/predictions/zheef7k26fhytoxwz7ceri2744/cancel"
},
"version": "db44d8128b86ccbf770aa1c1d6cefa2f7dc7ee02333a4a3ab004e0de89d24f76"
}
Generating 64x64 samples with 25 timesteps using GLIDE-base-64px...
0%| | 0/23 [00:00<?, ?it/s]
4%|▍ | 1/23 [00:00<00:17, 1.27it/s]
9%|▊ | 2/23 [00:01<00:15, 1.34it/s]
13%|█▎ | 3/23 [00:02<00:14, 1.36it/s]
17%|█▋ | 4/23 [00:02<00:09, 1.93it/s]
22%|██▏ | 5/23 [00:02<00:07, 2.52it/s]
26%|██▌ | 6/23 [00:02<00:05, 3.09it/s]
30%|███ | 7/23 [00:02<00:04, 3.61it/s]
35%|███▍ | 8/23 [00:03<00:03, 4.06it/s]
39%|███▉ | 9/23 [00:03<00:03, 4.42it/s]
43%|████▎ | 10/23 [00:03<00:02, 4.72it/s]
48%|████▊ | 11/23 [00:03<00:02, 4.94it/s]
52%|█████▏ | 12/23 [00:03<00:02, 5.09it/s]
57%|█████▋ | 13/23 [00:04<00:01, 5.22it/s]
61%|██████ | 14/23 [00:04<00:01, 5.31it/s]
65%|██████▌ | 15/23 [00:04<00:01, 5.36it/s]
70%|██████▉ | 16/23 [00:04<00:01, 5.39it/s]
74%|███████▍ | 17/23 [00:04<00:01, 5.42it/s]
78%|███████▊ | 18/23 [00:04<00:00, 5.43it/s]
83%|████████▎ | 19/23 [00:05<00:00, 5.46it/s]
87%|████████▋ | 20/23 [00:05<00:00, 5.46it/s]
91%|█████████▏| 21/23 [00:05<00:00, 5.47it/s]
96%|█████████▌| 22/23 [00:05<00:00, 5.47it/s]
100%|██████████| 23/23 [00:05<00:00, 5.46it/s]
100%|██████████| 23/23 [00:05<00:00, 3.92it/s]
Upsampling outputs from GLIDE-base 64x64 to 256x256 using 27 timesteps...
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:01<00:47, 1.97s/it]
8%|▊ | 2/25 [00:03<00:45, 1.96s/it]
12%|█▏ | 3/25 [00:05<00:43, 1.96s/it]
16%|█▌ | 4/25 [00:06<00:28, 1.38s/it]
20%|██ | 5/25 [00:06<00:21, 1.06s/it]
24%|██▍ | 6/25 [00:07<00:16, 1.15it/s]
28%|██▊ | 7/25 [00:07<00:13, 1.34it/s]
32%|███▏ | 8/25 [00:08<00:11, 1.50it/s]
36%|███▌ | 9/25 [00:08<00:09, 1.63it/s]
40%|████ | 10/25 [00:09<00:08, 1.73it/s]
44%|████▍ | 11/25 [00:09<00:07, 1.81it/s]
48%|████▊ | 12/25 [00:10<00:06, 1.86it/s]
52%|█████▏ | 13/25 [00:10<00:06, 1.90it/s]
56%|█████▌ | 14/25 [00:11<00:05, 1.94it/s]
60%|██████ | 15/25 [00:11<00:05, 1.96it/s]
64%|██████▍ | 16/25 [00:12<00:04, 1.97it/s]
68%|██████▊ | 17/25 [00:12<00:04, 1.98it/s]
72%|███████▏ | 18/25 [00:13<00:03, 1.99it/s]
76%|███████▌ | 19/25 [00:13<00:03, 1.99it/s]
80%|████████ | 20/25 [00:14<00:02, 1.99it/s]
84%|████████▍ | 21/25 [00:14<00:02, 2.00it/s]
88%|████████▊ | 22/25 [00:15<00:01, 1.99it/s]
92%|█████████▏| 23/25 [00:15<00:01, 1.99it/s]
96%|█████████▌| 24/25 [00:16<00:00, 2.00it/s]
100%|██████████| 25/25 [00:16<00:00, 2.00it/s]
100%|██████████| 25/25 [00:16<00:00, 1.49it/s]
This example was created by a different version, laion-ai/laionide-v3:db44d812.