You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"laion-ai/ongo:41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6",
{
input: {
seed: -1,
steps: 100,
width: 256,
height: 256,
prompt: "bunny rabbit in style of van gogh",
negative: "",
batch_size: 3,
guidance_scale: 5,
aesthetic_rating: 8,
aesthetic_weight: 0.1,
init_skip_fraction: 0
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"laion-ai/ongo:41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6",
input={
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "bunny rabbit in style of van gogh",
"negative": "",
"batch_size": 3,
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1,
"init_skip_fraction": 0
}
)
# The laion-ai/ongo model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/laion-ai/ongo/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6",
"input": {
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "bunny rabbit in style of van gogh",
"negative": "",
"batch_size": 3,
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1,
"init_skip_fraction": 0
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/laion-ai/ongo@sha256:41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6 \
-i 'seed=-1' \
-i 'steps=100' \
-i 'width=256' \
-i 'height=256' \
-i 'prompt="bunny rabbit in style of van gogh"' \
-i 'negative=""' \
-i 'batch_size=3' \
-i 'guidance_scale=5' \
-i 'aesthetic_rating=8' \
-i 'aesthetic_weight=0.1' \
-i 'init_skip_fraction=0'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/laion-ai/ongo@sha256:41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "steps": 100, "width": 256, "height": 256, "prompt": "bunny rabbit in style of van gogh", "negative": "", "batch_size": 3, "guidance_scale": 5, "aesthetic_rating": 8, "aesthetic_weight": 0.1, "init_skip_fraction": 0 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.014. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-06-24T23:10:08.972024Z",
"created_at": "2022-06-24T23:09:08.495722Z",
"data_removed": false,
"error": null,
"id": "lvc2nt4xu5emlkxffo7hp6f2py",
"input": {
"seed": -1,
"steps": "100",
"width": 256,
"height": 256,
"prompt": "bunny rabbit in style of van gogh",
"batch_size": "3",
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1
},
"logs": "Using seed 3823169816\nRunning simulation for bunny rabbit in style of van gogh\nEncoding text embeddings with bunny rabbit in style of van gogh dimensions\nUsing aesthetic embedding 8 with weight 0.1\nUsing inpaint model but no image is provided. Initializing with zeros.\nRunning diffusion...\n\n0it [00:00, ?it/s]\n\nTimestep 0 - saving sample\n 0%| | 0/100 [00:00<?, ?it/s]\u001b[A\n1it [00:02, 2.33s/it]\n\n 1%| | 1/100 [00:02<03:51, 2.33s/it]\u001b[A\n2it [00:04, 2.09s/it]\n\n 2%|▏ | 2/100 [00:04<03:24, 2.09s/it]\u001b[A\n3it [00:06, 2.02s/it]\n\n 3%|▎ | 3/100 [00:06<03:15, 2.02s/it]\u001b[A\n4it [00:06, 1.42s/it]\n\n 4%|▍ | 4/100 [00:06<02:15, 1.42s/it]\u001b[A\n5it [00:07, 1.08s/it]\n\n 5%|▌ | 5/100 [00:07<01:42, 1.08s/it]\u001b[A\n6it [00:07, 1.14it/s]\n\n 6%|▌ | 6/100 [00:07<01:22, 1.14it/s]\u001b[A\n7it [00:08, 1.33it/s]\n\n 7%|▋ | 7/100 [00:08<01:09, 1.33it/s]\u001b[A\n8it [00:08, 1.49it/s]\n\n 8%|▊ | 8/100 [00:08<01:01, 1.49it/s]\u001b[A\n9it [00:09, 1.63it/s]\n\n 9%|▉ | 9/100 [00:09<00:55, 1.63it/s]\u001b[A\n10it [00:09, 1.73it/s]\n\nTimestep 10 - saving sample\n 10%|█ | 10/100 [00:09<00:51, 1.73it/s]\u001b[A\n11it [00:10, 1.48it/s]\n\n 11%|█ | 11/100 [00:10<01:00, 1.48it/s]\u001b[A\n12it [00:11, 1.61it/s]\n\n 12%|█▏ | 12/100 [00:11<00:54, 1.61it/s]\u001b[A\n13it [00:11, 1.71it/s]\n\n 13%|█▎ | 13/100 [00:11<00:50, 1.71it/s]\u001b[A\n14it [00:12, 1.80it/s]\n\n 14%|█▍ | 14/100 [00:12<00:47, 1.80it/s]\u001b[A\n15it [00:12, 1.85it/s]\n\n 15%|█▌ | 15/100 [00:12<00:45, 1.85it/s]\u001b[A\n16it [00:13, 1.89it/s]\n\n 16%|█▌ | 16/100 [00:13<00:44, 1.89it/s]\u001b[A\n17it [00:13, 1.92it/s]\n\n 17%|█▋ | 17/100 [00:13<00:43, 1.92it/s]\u001b[A\n18it [00:14, 1.93it/s]\n\n 18%|█▊ | 18/100 [00:14<00:42, 1.93it/s]\u001b[A\n19it [00:14, 1.95it/s]\n\n 19%|█▉ | 19/100 [00:14<00:41, 1.95it/s]\u001b[A\n20it [00:15, 1.96it/s]\n\nTimestep 20 - saving sample\n 20%|██ | 20/100 [00:15<00:40, 1.96it/s]\u001b[A\n21it [00:15, 1.58it/s]\n\n 21%|██ | 21/100 [00:15<00:50, 1.58it/s]\u001b[A\n22it [00:16, 1.69it/s]\n\n 22%|██▏ | 22/100 [00:16<00:46, 1.69it/s]\u001b[A\n23it [00:16, 1.77it/s]\n\n 23%|██▎ | 23/100 [00:16<00:43, 1.77it/s]\u001b[A\n24it [00:17, 1.82it/s]\n\n 24%|██▍ | 24/100 [00:17<00:41, 1.82it/s]\u001b[A\n25it [00:17, 1.87it/s]\n\n 25%|██▌ | 25/100 [00:17<00:40, 1.87it/s]\u001b[A\n26it [00:18, 1.90it/s]\n\n 26%|██▌ | 26/100 [00:18<00:39, 1.90it/s]\u001b[A\n27it [00:18, 1.92it/s]\n\n 27%|██▋ | 27/100 [00:18<00:38, 1.92it/s]\u001b[A\n28it [00:19, 1.93it/s]\n\n 28%|██▊ | 28/100 [00:19<00:37, 1.93it/s]\u001b[A\n29it [00:20, 1.93it/s]\n\n 29%|██▉ | 29/100 [00:20<00:36, 1.93it/s]\u001b[A\n30it [00:20, 1.95it/s]\n\nTimestep 30 - saving sample\n 30%|███ | 30/100 [00:20<00:35, 1.95it/s]\u001b[A\n31it [00:21, 1.57it/s]\n\n 31%|███ | 31/100 [00:21<00:43, 1.57it/s]\u001b[A\n32it [00:21, 1.67it/s]\n\n 32%|███▏ | 32/100 [00:21<00:40, 1.67it/s]\u001b[A\n33it [00:22, 1.75it/s]\n\n 33%|███▎ | 33/100 [00:22<00:38, 1.75it/s]\u001b[A\n34it [00:22, 1.81it/s]\n\n 34%|███▍ | 34/100 [00:22<00:36, 1.81it/s]\u001b[A\n35it [00:23, 1.86it/s]\n\n 35%|███▌ | 35/100 [00:23<00:35, 1.86it/s]\u001b[A\n36it [00:23, 1.89it/s]\n\n 36%|███▌ | 36/100 [00:23<00:33, 1.89it/s]\u001b[A\n37it [00:24, 1.92it/s]\n\n 37%|███▋ | 37/100 [00:24<00:32, 1.92it/s]\u001b[A\n38it [00:24, 1.93it/s]\n\n 38%|███▊ | 38/100 [00:24<00:32, 1.93it/s]\u001b[A\n39it [00:25, 1.95it/s]\n\n 39%|███▉ | 39/100 [00:25<00:31, 1.95it/s]\u001b[A\n40it [00:25, 1.96it/s]\n\nTimestep 40 - saving sample\n 40%|████ | 40/100 [00:25<00:30, 1.96it/s]\u001b[A\n41it [00:26, 1.58it/s]\n\n 41%|████ | 41/100 [00:26<00:37, 1.58it/s]\u001b[A\n42it [00:27, 1.70it/s]\n\n 42%|████▏ | 42/100 [00:27<00:34, 1.70it/s]\u001b[A\n43it [00:27, 1.78it/s]\n\n 43%|████▎ | 43/100 [00:27<00:32, 1.78it/s]\u001b[A\n44it [00:28, 1.84it/s]\n\n 44%|████▍ | 44/100 [00:28<00:30, 1.84it/s]\u001b[A\n45it [00:28, 1.89it/s]\n\n 45%|████▌ | 45/100 [00:28<00:29, 1.89it/s]\u001b[A\n46it [00:29, 1.93it/s]\n\n 46%|████▌ | 46/100 [00:29<00:28, 1.93it/s]\u001b[A\n47it [00:29, 1.95it/s]\n\n 47%|████▋ | 47/100 [00:29<00:27, 1.95it/s]\u001b[A\n48it [00:30, 1.97it/s]\n\n 48%|████▊ | 48/100 [00:30<00:26, 1.97it/s]\u001b[A\n49it [00:30, 1.98it/s]\n\n 49%|████▉ | 49/100 [00:30<00:25, 1.98it/s]\u001b[A\n50it [00:31, 2.00it/s]\n\nTimestep 50 - saving sample\n 50%|█████ | 50/100 [00:31<00:25, 2.00it/s]\u001b[A\n51it [00:32, 1.61it/s]\n\n 51%|█████ | 51/100 [00:32<00:30, 1.61it/s]\u001b[A\n52it [00:32, 1.72it/s]\n\n 52%|█████▏ | 52/100 [00:32<00:27, 1.72it/s]\u001b[A\n53it [00:33, 1.81it/s]\n\n 53%|█████▎ | 53/100 [00:33<00:25, 1.81it/s]\u001b[A\n54it [00:33, 1.87it/s]\n\n 54%|█████▍ | 54/100 [00:33<00:24, 1.87it/s]\u001b[A\n55it [00:34, 1.92it/s]\n\n 55%|█████▌ | 55/100 [00:34<00:23, 1.92it/s]\u001b[A\n56it [00:34, 1.96it/s]\n\n 56%|█████▌ | 56/100 [00:34<00:22, 1.96it/s]\u001b[A\n57it [00:35, 1.99it/s]\n\n 57%|█████▋ | 57/100 [00:35<00:21, 1.99it/s]\u001b[A\n58it [00:35, 2.00it/s]\n\n 58%|█████▊ | 58/100 [00:35<00:20, 2.00it/s]\u001b[A\n59it [00:36, 2.02it/s]\n\n 59%|█████▉ | 59/100 [00:36<00:20, 2.02it/s]\u001b[A\n60it [00:36, 2.03it/s]\n\nTimestep 60 - saving sample\n 60%|██████ | 60/100 [00:36<00:19, 2.03it/s]\u001b[A\n61it [00:37, 1.64it/s]\n\n 61%|██████ | 61/100 [00:37<00:23, 1.64it/s]\u001b[A\n62it [00:38, 1.76it/s]\n\n 62%|██████▏ | 62/100 [00:38<00:21, 1.76it/s]\u001b[A\n63it [00:38, 1.84it/s]\n\n 63%|██████▎ | 63/100 [00:38<00:20, 1.84it/s]\u001b[A\n64it [00:38, 1.91it/s]\n\n 64%|██████▍ | 64/100 [00:38<00:18, 1.91it/s]\u001b[A\n65it [00:39, 1.95it/s]\n\n 65%|██████▌ | 65/100 [00:39<00:17, 1.95it/s]\u001b[A\n66it [00:39, 1.99it/s]\n\n 66%|██████▌ | 66/100 [00:39<00:17, 1.99it/s]\u001b[A\n67it [00:40, 2.01it/s]\n\n 67%|██████▋ | 67/100 [00:40<00:16, 2.01it/s]\u001b[A\n68it [00:40, 2.04it/s]\n\n 68%|██████▊ | 68/100 [00:40<00:15, 2.04it/s]\u001b[A\n69it [00:41, 2.05it/s]\n\n 69%|██████▉ | 69/100 [00:41<00:15, 2.05it/s]\u001b[A\n70it [00:41, 2.07it/s]\n\nTimestep 70 - saving sample\n 70%|███████ | 70/100 [00:41<00:14, 2.07it/s]\u001b[A\n71it [00:42, 1.67it/s]\n\n 71%|███████ | 71/100 [00:42<00:17, 1.67it/s]\u001b[A\n72it [00:43, 1.78it/s]\n\n 72%|███████▏ | 72/100 [00:43<00:15, 1.78it/s]\u001b[A\n73it [00:43, 1.87it/s]\n\n 73%|███████▎ | 73/100 [00:43<00:14, 1.87it/s]\u001b[A\n74it [00:44, 1.93it/s]\n\n 74%|███████▍ | 74/100 [00:44<00:13, 1.93it/s]\u001b[A\n75it [00:44, 1.98it/s]\n\n 75%|███████▌ | 75/100 [00:44<00:12, 1.98it/s]\u001b[A\n76it [00:45, 2.01it/s]\n\n 76%|███████▌ | 76/100 [00:45<00:11, 2.01it/s]\u001b[A\n77it [00:45, 2.04it/s]\n\n 77%|███████▋ | 77/100 [00:45<00:11, 2.04it/s]\u001b[A\n78it [00:46, 2.06it/s]\n\n 78%|███████▊ | 78/100 [00:46<00:10, 2.06it/s]\u001b[A\n79it [00:46, 2.08it/s]\n\n 79%|███████▉ | 79/100 [00:46<00:10, 2.08it/s]\u001b[A\n80it [00:46, 2.09it/s]\n\nTimestep 80 - saving sample\n 80%|████████ | 80/100 [00:46<00:09, 2.09it/s]\u001b[A\n81it [00:47, 1.68it/s]\n\n 81%|████████ | 81/100 [00:47<00:11, 1.68it/s]\u001b[A\n82it [00:48, 1.80it/s]\n\n 82%|████████▏ | 82/100 [00:48<00:10, 1.80it/s]\u001b[A\n83it [00:48, 1.88it/s]\n\n 83%|████████▎ | 83/100 [00:48<00:09, 1.88it/s]\u001b[A\n84it [00:49, 1.95it/s]\n\n 84%|████████▍ | 84/100 [00:49<00:08, 1.95it/s]\u001b[A\n85it [00:49, 2.00it/s]\n\n 85%|████████▌ | 85/100 [00:49<00:07, 2.00it/s]\u001b[A\n86it [00:50, 2.03it/s]\n\n 86%|████████▌ | 86/100 [00:50<00:06, 2.03it/s]\u001b[A\n87it [00:50, 2.06it/s]\n\n 87%|████████▋ | 87/100 [00:50<00:06, 2.06it/s]\u001b[A\n88it [00:51, 2.08it/s]\n\n 88%|████████▊ | 88/100 [00:51<00:05, 2.08it/s]\u001b[A\n89it [00:51, 2.10it/s]\n\n 89%|████████▉ | 89/100 [00:51<00:05, 2.10it/s]\u001b[A\n90it [00:52, 2.10it/s]\n\nTimestep 90 - saving sample\n 90%|█████████ | 90/100 [00:52<00:04, 2.10it/s]\u001b[A\n91it [00:52, 1.69it/s]\n\n 91%|█████████ | 91/100 [00:52<00:05, 1.69it/s]\u001b[A\n92it [00:53, 1.81it/s]\n\n 92%|█████████▏| 92/100 [00:53<00:04, 1.81it/s]\u001b[A\n93it [00:53, 1.90it/s]\n\n 93%|█████████▎| 93/100 [00:53<00:03, 1.90it/s]\u001b[A\n94it [00:54, 1.96it/s]\n\n 94%|█████████▍| 94/100 [00:54<00:03, 1.96it/s]\u001b[A\n95it [00:54, 2.01it/s]\n\n 95%|█████████▌| 95/100 [00:54<00:02, 2.01it/s]\u001b[A\n96it [00:55, 2.05it/s]\n\n 96%|█████████▌| 96/100 [00:55<00:01, 2.05it/s]\u001b[A\n97it [00:55, 2.08it/s]\n\n 97%|█████████▋| 97/100 [00:55<00:01, 2.08it/s]\u001b[A\n98it [00:56, 2.10it/s]\n\n 98%|█████████▊| 98/100 [00:56<00:00, 2.10it/s]\u001b[A\n99it [00:56, 2.11it/s]\n\nTimestep 99 - saving final sample\n 99%|█████████▉| 99/100 [00:56<00:00, 2.11it/s]\u001b[A\n100it [00:57, 1.70it/s]\n\n100%|██████████| 100/100 [00:57<00:00, 1.70it/s]\u001b[A\n100%|██████████| 100/100 [00:57<00:00, 1.74it/s]\n\n100it [00:57, 1.74it/s]",
"metrics": {
"predict_time": 60.32768,
"total_time": 60.476302
},
"output": [
[
"https://replicate.delivery/mgxm/9353d053-81a7-45cf-8a74-bb90f4079115/current_0.jpg",
"https://replicate.delivery/mgxm/8ed00b10-709e-4e49-88e3-d668997a6981/current_1.jpg",
"https://replicate.delivery/mgxm/9b80506b-c375-4e0f-bee8-8443789e4018/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/a9b76357-22cc-4c70-b824-517ac86bf469/current_0.jpg",
"https://replicate.delivery/mgxm/a37b8810-3420-40f9-8e7f-37d386794cfd/current_1.jpg",
"https://replicate.delivery/mgxm/9f7b1277-e14a-402b-bac3-e18ac1d86a00/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/fa4c7166-ed00-4d6f-82f3-e7d8387ea59d/current_0.jpg",
"https://replicate.delivery/mgxm/94cff6ce-fd73-4b5d-a127-2c1edb6217d7/current_1.jpg",
"https://replicate.delivery/mgxm/8783659d-8242-40bf-8317-6cf6fa65c394/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/da74c322-b33b-4f76-b837-8a34b2fb0ade/current_0.jpg",
"https://replicate.delivery/mgxm/4dd71239-2fe0-4ebe-ba53-6a7d1e6b35a6/current_1.jpg",
"https://replicate.delivery/mgxm/a02c25b0-ce30-469a-b822-ce04e6236a93/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/025e8f3d-bacb-4d54-88dd-69b5ddb5edbe/current_0.jpg",
"https://replicate.delivery/mgxm/b2e8a2a0-ff27-4a47-8a4e-3438f89b131d/current_1.jpg",
"https://replicate.delivery/mgxm/31874e33-57cf-43fb-8966-8cf9dee52175/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/e0b9fdd6-824d-4eaf-b810-ca8acfba2a29/current_0.jpg",
"https://replicate.delivery/mgxm/978aa7b0-b21c-4b1f-9b67-e0e6a57bac60/current_1.jpg",
"https://replicate.delivery/mgxm/20eebe0c-bef3-4448-8d9b-1624da68892e/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/350e6127-192d-4fdf-92d5-2929c65a3875/current_0.jpg",
"https://replicate.delivery/mgxm/a1d3db1f-57e8-4999-b9a6-a42982f2bbad/current_1.jpg",
"https://replicate.delivery/mgxm/443f96cb-752e-45c8-b384-5693468ff4de/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/f250dc45-3546-4baa-a3cc-7ac453cd7424/current_0.jpg",
"https://replicate.delivery/mgxm/44d6c554-93e6-4bfe-b729-38177ef0503f/current_1.jpg",
"https://replicate.delivery/mgxm/312561c5-5b6e-4d6c-a11a-8111285cae96/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/bcf82116-bab9-45f2-bc20-821c04c74029/current_0.jpg",
"https://replicate.delivery/mgxm/13efbc35-99b6-4700-872e-17b16cb4fa9b/current_1.jpg",
"https://replicate.delivery/mgxm/b30623f5-1cc3-483d-b358-c0f59bb3a978/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/9612dde2-2e28-4e25-95ec-f8bbf98b6e93/current_0.jpg",
"https://replicate.delivery/mgxm/880166d2-44db-4e31-aa1a-f3e36f626d3c/current_1.jpg",
"https://replicate.delivery/mgxm/d2d3d4c3-a3b7-41f0-be0c-cb03ef9212d2/current_2.jpg"
],
[
"https://replicate.delivery/mgxm/641c2320-4d9f-4a7b-bc3f-bcd225f70eee/current_0.jpg",
"https://replicate.delivery/mgxm/b46093ec-2abd-49b0-aea5-1e2dc7421ee5/current_1.jpg",
"https://replicate.delivery/mgxm/21dfe26e-7782-4242-a33c-142721f40b37/current_2.jpg"
]
],
"started_at": "2022-06-24T23:09:08.644344Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/lvc2nt4xu5emlkxffo7hp6f2py",
"cancel": "https://api.replicate.com/v1/predictions/lvc2nt4xu5emlkxffo7hp6f2py/cancel"
},
"version": "41ad32228705648d785fc33be19d98dfa058cfd59d1f9a7c2248757e3652cdf6"
}
Using seed 3823169816
Running simulation for bunny rabbit in style of van gogh
Encoding text embeddings with bunny rabbit in style of van gogh dimensions
Using aesthetic embedding 8 with weight 0.1
Using inpaint model but no image is provided. Initializing with zeros.
Running diffusion...
0it [00:00, ?it/s]
Timestep 0 - saving sample
0%| | 0/100 [00:00<?, ?it/s]
1it [00:02, 2.33s/it]
1%| | 1/100 [00:02<03:51, 2.33s/it]
2it [00:04, 2.09s/it]
2%|▏ | 2/100 [00:04<03:24, 2.09s/it]
3it [00:06, 2.02s/it]
3%|▎ | 3/100 [00:06<03:15, 2.02s/it]
4it [00:06, 1.42s/it]
4%|▍ | 4/100 [00:06<02:15, 1.42s/it]
5it [00:07, 1.08s/it]
5%|▌ | 5/100 [00:07<01:42, 1.08s/it]
6it [00:07, 1.14it/s]
6%|▌ | 6/100 [00:07<01:22, 1.14it/s]
7it [00:08, 1.33it/s]
7%|▋ | 7/100 [00:08<01:09, 1.33it/s]
8it [00:08, 1.49it/s]
8%|▊ | 8/100 [00:08<01:01, 1.49it/s]
9it [00:09, 1.63it/s]
9%|▉ | 9/100 [00:09<00:55, 1.63it/s]
10it [00:09, 1.73it/s]
Timestep 10 - saving sample
10%|█ | 10/100 [00:09<00:51, 1.73it/s]
11it [00:10, 1.48it/s]
11%|█ | 11/100 [00:10<01:00, 1.48it/s]
12it [00:11, 1.61it/s]
12%|█▏ | 12/100 [00:11<00:54, 1.61it/s]
13it [00:11, 1.71it/s]
13%|█▎ | 13/100 [00:11<00:50, 1.71it/s]
14it [00:12, 1.80it/s]
14%|█▍ | 14/100 [00:12<00:47, 1.80it/s]
15it [00:12, 1.85it/s]
15%|█▌ | 15/100 [00:12<00:45, 1.85it/s]
16it [00:13, 1.89it/s]
16%|█▌ | 16/100 [00:13<00:44, 1.89it/s]
17it [00:13, 1.92it/s]
17%|█▋ | 17/100 [00:13<00:43, 1.92it/s]
18it [00:14, 1.93it/s]
18%|█▊ | 18/100 [00:14<00:42, 1.93it/s]
19it [00:14, 1.95it/s]
19%|█▉ | 19/100 [00:14<00:41, 1.95it/s]
20it [00:15, 1.96it/s]
Timestep 20 - saving sample
20%|██ | 20/100 [00:15<00:40, 1.96it/s]
21it [00:15, 1.58it/s]
21%|██ | 21/100 [00:15<00:50, 1.58it/s]
22it [00:16, 1.69it/s]
22%|██▏ | 22/100 [00:16<00:46, 1.69it/s]
23it [00:16, 1.77it/s]
23%|██▎ | 23/100 [00:16<00:43, 1.77it/s]
24it [00:17, 1.82it/s]
24%|██▍ | 24/100 [00:17<00:41, 1.82it/s]
25it [00:17, 1.87it/s]
25%|██▌ | 25/100 [00:17<00:40, 1.87it/s]
26it [00:18, 1.90it/s]
26%|██▌ | 26/100 [00:18<00:39, 1.90it/s]
27it [00:18, 1.92it/s]
27%|██▋ | 27/100 [00:18<00:38, 1.92it/s]
28it [00:19, 1.93it/s]
28%|██▊ | 28/100 [00:19<00:37, 1.93it/s]
29it [00:20, 1.93it/s]
29%|██▉ | 29/100 [00:20<00:36, 1.93it/s]
30it [00:20, 1.95it/s]
Timestep 30 - saving sample
30%|███ | 30/100 [00:20<00:35, 1.95it/s]
31it [00:21, 1.57it/s]
31%|███ | 31/100 [00:21<00:43, 1.57it/s]
32it [00:21, 1.67it/s]
32%|███▏ | 32/100 [00:21<00:40, 1.67it/s]
33it [00:22, 1.75it/s]
33%|███▎ | 33/100 [00:22<00:38, 1.75it/s]
34it [00:22, 1.81it/s]
34%|███▍ | 34/100 [00:22<00:36, 1.81it/s]
35it [00:23, 1.86it/s]
35%|███▌ | 35/100 [00:23<00:35, 1.86it/s]
36it [00:23, 1.89it/s]
36%|███▌ | 36/100 [00:23<00:33, 1.89it/s]
37it [00:24, 1.92it/s]
37%|███▋ | 37/100 [00:24<00:32, 1.92it/s]
38it [00:24, 1.93it/s]
38%|███▊ | 38/100 [00:24<00:32, 1.93it/s]
39it [00:25, 1.95it/s]
39%|███▉ | 39/100 [00:25<00:31, 1.95it/s]
40it [00:25, 1.96it/s]
Timestep 40 - saving sample
40%|████ | 40/100 [00:25<00:30, 1.96it/s]
41it [00:26, 1.58it/s]
41%|████ | 41/100 [00:26<00:37, 1.58it/s]
42it [00:27, 1.70it/s]
42%|████▏ | 42/100 [00:27<00:34, 1.70it/s]
43it [00:27, 1.78it/s]
43%|████▎ | 43/100 [00:27<00:32, 1.78it/s]
44it [00:28, 1.84it/s]
44%|████▍ | 44/100 [00:28<00:30, 1.84it/s]
45it [00:28, 1.89it/s]
45%|████▌ | 45/100 [00:28<00:29, 1.89it/s]
46it [00:29, 1.93it/s]
46%|████▌ | 46/100 [00:29<00:28, 1.93it/s]
47it [00:29, 1.95it/s]
47%|████▋ | 47/100 [00:29<00:27, 1.95it/s]
48it [00:30, 1.97it/s]
48%|████▊ | 48/100 [00:30<00:26, 1.97it/s]
49it [00:30, 1.98it/s]
49%|████▉ | 49/100 [00:30<00:25, 1.98it/s]
50it [00:31, 2.00it/s]
Timestep 50 - saving sample
50%|█████ | 50/100 [00:31<00:25, 2.00it/s]
51it [00:32, 1.61it/s]
51%|█████ | 51/100 [00:32<00:30, 1.61it/s]
52it [00:32, 1.72it/s]
52%|█████▏ | 52/100 [00:32<00:27, 1.72it/s]
53it [00:33, 1.81it/s]
53%|█████▎ | 53/100 [00:33<00:25, 1.81it/s]
54it [00:33, 1.87it/s]
54%|█████▍ | 54/100 [00:33<00:24, 1.87it/s]
55it [00:34, 1.92it/s]
55%|█████▌ | 55/100 [00:34<00:23, 1.92it/s]
56it [00:34, 1.96it/s]
56%|█████▌ | 56/100 [00:34<00:22, 1.96it/s]
57it [00:35, 1.99it/s]
57%|█████▋ | 57/100 [00:35<00:21, 1.99it/s]
58it [00:35, 2.00it/s]
58%|█████▊ | 58/100 [00:35<00:20, 2.00it/s]
59it [00:36, 2.02it/s]
59%|█████▉ | 59/100 [00:36<00:20, 2.02it/s]
60it [00:36, 2.03it/s]
Timestep 60 - saving sample
60%|██████ | 60/100 [00:36<00:19, 2.03it/s]
61it [00:37, 1.64it/s]
61%|██████ | 61/100 [00:37<00:23, 1.64it/s]
62it [00:38, 1.76it/s]
62%|██████▏ | 62/100 [00:38<00:21, 1.76it/s]
63it [00:38, 1.84it/s]
63%|██████▎ | 63/100 [00:38<00:20, 1.84it/s]
64it [00:38, 1.91it/s]
64%|██████▍ | 64/100 [00:38<00:18, 1.91it/s]
65it [00:39, 1.95it/s]
65%|██████▌ | 65/100 [00:39<00:17, 1.95it/s]
66it [00:39, 1.99it/s]
66%|██████▌ | 66/100 [00:39<00:17, 1.99it/s]
67it [00:40, 2.01it/s]
67%|██████▋ | 67/100 [00:40<00:16, 2.01it/s]
68it [00:40, 2.04it/s]
68%|██████▊ | 68/100 [00:40<00:15, 2.04it/s]
69it [00:41, 2.05it/s]
69%|██████▉ | 69/100 [00:41<00:15, 2.05it/s]
70it [00:41, 2.07it/s]
Timestep 70 - saving sample
70%|███████ | 70/100 [00:41<00:14, 2.07it/s]
71it [00:42, 1.67it/s]
71%|███████ | 71/100 [00:42<00:17, 1.67it/s]
72it [00:43, 1.78it/s]
72%|███████▏ | 72/100 [00:43<00:15, 1.78it/s]
73it [00:43, 1.87it/s]
73%|███████▎ | 73/100 [00:43<00:14, 1.87it/s]
74it [00:44, 1.93it/s]
74%|███████▍ | 74/100 [00:44<00:13, 1.93it/s]
75it [00:44, 1.98it/s]
75%|███████▌ | 75/100 [00:44<00:12, 1.98it/s]
76it [00:45, 2.01it/s]
76%|███████▌ | 76/100 [00:45<00:11, 2.01it/s]
77it [00:45, 2.04it/s]
77%|███████▋ | 77/100 [00:45<00:11, 2.04it/s]
78it [00:46, 2.06it/s]
78%|███████▊ | 78/100 [00:46<00:10, 2.06it/s]
79it [00:46, 2.08it/s]
79%|███████▉ | 79/100 [00:46<00:10, 2.08it/s]
80it [00:46, 2.09it/s]
Timestep 80 - saving sample
80%|████████ | 80/100 [00:46<00:09, 2.09it/s]
81it [00:47, 1.68it/s]
81%|████████ | 81/100 [00:47<00:11, 1.68it/s]
82it [00:48, 1.80it/s]
82%|████████▏ | 82/100 [00:48<00:10, 1.80it/s]
83it [00:48, 1.88it/s]
83%|████████▎ | 83/100 [00:48<00:09, 1.88it/s]
84it [00:49, 1.95it/s]
84%|████████▍ | 84/100 [00:49<00:08, 1.95it/s]
85it [00:49, 2.00it/s]
85%|████████▌ | 85/100 [00:49<00:07, 2.00it/s]
86it [00:50, 2.03it/s]
86%|████████▌ | 86/100 [00:50<00:06, 2.03it/s]
87it [00:50, 2.06it/s]
87%|████████▋ | 87/100 [00:50<00:06, 2.06it/s]
88it [00:51, 2.08it/s]
88%|████████▊ | 88/100 [00:51<00:05, 2.08it/s]
89it [00:51, 2.10it/s]
89%|████████▉ | 89/100 [00:51<00:05, 2.10it/s]
90it [00:52, 2.10it/s]
Timestep 90 - saving sample
90%|█████████ | 90/100 [00:52<00:04, 2.10it/s]
91it [00:52, 1.69it/s]
91%|█████████ | 91/100 [00:52<00:05, 1.69it/s]
92it [00:53, 1.81it/s]
92%|█████████▏| 92/100 [00:53<00:04, 1.81it/s]
93it [00:53, 1.90it/s]
93%|█████████▎| 93/100 [00:53<00:03, 1.90it/s]
94it [00:54, 1.96it/s]
94%|█████████▍| 94/100 [00:54<00:03, 1.96it/s]
95it [00:54, 2.01it/s]
95%|█████████▌| 95/100 [00:54<00:02, 2.01it/s]
96it [00:55, 2.05it/s]
96%|█████████▌| 96/100 [00:55<00:01, 2.05it/s]
97it [00:55, 2.08it/s]
97%|█████████▋| 97/100 [00:55<00:01, 2.08it/s]
98it [00:56, 2.10it/s]
98%|█████████▊| 98/100 [00:56<00:00, 2.10it/s]
99it [00:56, 2.11it/s]
Timestep 99 - saving final sample
99%|█████████▉| 99/100 [00:56<00:00, 2.11it/s]
100it [00:57, 1.70it/s]
100%|██████████| 100/100 [00:57<00:00, 1.70it/s]
100%|██████████| 100/100 [00:57<00:00, 1.74it/s]
100it [00:57, 1.74it/s]