You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"laion-ai/ongo:818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f",
{
input: {
seed: -1,
steps: 100,
width: 256,
height: 256,
prompt: "concept art of 2001 a space odyssey",
negative: "",
batch_size: 6,
guidance_scale: 5,
aesthetic_rating: 9,
aesthetic_weight: 0.5,
init_skip_fraction: 0
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"laion-ai/ongo:818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f",
input={
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "concept art of 2001 a space odyssey",
"negative": "",
"batch_size": 6,
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5,
"init_skip_fraction": 0
}
)
# The laion-ai/ongo model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/laion-ai/ongo/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f",
"input": {
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "concept art of 2001 a space odyssey",
"negative": "",
"batch_size": 6,
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5,
"init_skip_fraction": 0
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/laion-ai/ongo@sha256:818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f \
-i 'seed=-1' \
-i 'steps=100' \
-i 'width=256' \
-i 'height=256' \
-i 'prompt="concept art of 2001 a space odyssey"' \
-i 'negative=""' \
-i 'batch_size=6' \
-i 'guidance_scale=5' \
-i 'aesthetic_rating=9' \
-i 'aesthetic_weight=0.5' \
-i 'init_skip_fraction=0'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/laion-ai/ongo@sha256:818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "steps": 100, "width": 256, "height": 256, "prompt": "concept art of 2001 a space odyssey", "negative": "", "batch_size": 6, "guidance_scale": 5, "aesthetic_rating": 9, "aesthetic_weight": 0.5, "init_skip_fraction": 0 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-06-05T03:36:03.637035Z",
"created_at": "2022-06-05T03:34:28.572215Z",
"data_removed": false,
"error": null,
"id": "6kabc6ksanea7nadevmu26n5uy",
"input": {
"seed": -1,
"steps": "100",
"width": 256,
"height": 256,
"prompt": "concept art of 2001 a space odyssey",
"batch_size": "6",
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5
},
"logs": "Encoding text with BERT\nEncoding text with CLIP\nUsing aesthetic embedding 9 with weight 0.5\nLoading image\nUsing inpaint model but no image is provided. Initializing with zeros.\nPacking CLIP and BERT embeddings into kwargs\nRunning diffusion...\n\n0it [00:00, ?it/s]\n\n 0%| | 0/100 [00:00<?, ?it/s]\u001b[A\n1it [00:02, 2.77s/it]\n\n 1%| | 1/100 [00:02<04:34, 2.77s/it]\u001b[A\n2it [00:04, 2.19s/it]\n\n 2%|▏ | 2/100 [00:04<03:34, 2.19s/it]\u001b[A\n3it [00:06, 2.00s/it]\n\n 3%|▎ | 3/100 [00:06<03:14, 2.00s/it]\u001b[A\n4it [00:06, 1.39s/it]\n\n 4%|▍ | 4/100 [00:06<02:13, 1.39s/it]\u001b[A\n5it [00:07, 1.05s/it]\n\n 5%|▌ | 5/100 [00:07<01:39, 1.05s/it]\u001b[A\n6it [00:08, 1.18s/it]\n\n 6%|▌ | 6/100 [00:08<01:50, 1.18s/it]\u001b[A\n7it [00:09, 1.07it/s]\n\n 7%|▋ | 7/100 [00:09<01:26, 1.07it/s]\u001b[A\n8it [00:09, 1.28it/s]\n\n 8%|▊ | 8/100 [00:09<01:11, 1.28it/s]\u001b[A\n9it [00:09, 1.48it/s]\n\n 9%|▉ | 9/100 [00:09<01:01, 1.48it/s]\u001b[A\n10it [00:10, 1.65it/s]\n\n 10%|█ | 10/100 [00:10<00:54, 1.65it/s]\u001b[A\n11it [00:11, 1.17it/s]\n\n 11%|█ | 11/100 [00:11<01:15, 1.17it/s]\u001b[A\n12it [00:12, 1.38it/s]\n\n 12%|█▏ | 12/100 [00:12<01:03, 1.38it/s]\u001b[A\n13it [00:12, 1.56it/s]\n\n 13%|█▎ | 13/100 [00:12<00:55, 1.56it/s]\u001b[A\n14it [00:13, 1.72it/s]\n\n 14%|█▍ | 14/100 [00:13<00:50, 1.72it/s]\u001b[A\n15it [00:13, 1.85it/s]\n\n 15%|█▌ | 15/100 [00:13<00:45, 1.85it/s]\u001b[A\n16it [00:15, 1.25it/s]\n\n 16%|█▌ | 16/100 [00:15<01:07, 1.25it/s]\u001b[A\n17it [00:15, 1.45it/s]\n\n 17%|█▋ | 17/100 [00:15<00:57, 1.45it/s]\u001b[A\n18it [00:15, 1.62it/s]\n\n 18%|█▊ | 18/100 [00:15<00:50, 1.62it/s]\u001b[A\n19it [00:16, 1.77it/s]\n\n 19%|█▉ | 19/100 [00:16<00:45, 1.77it/s]\u001b[A\n20it [00:16, 1.89it/s]\n\n 20%|██ | 20/100 [00:16<00:42, 1.89it/s]\u001b[A\n21it [00:18, 1.26it/s]\n\n 21%|██ | 21/100 [00:18<01:02, 1.26it/s]\u001b[A\n22it [00:18, 1.46it/s]\n\n 22%|██▏ | 22/100 [00:18<00:53, 1.46it/s]\u001b[A\n23it [00:19, 1.64it/s]\n\n 23%|██▎ | 23/100 [00:19<00:47, 1.64it/s]\u001b[A\n24it [00:19, 1.78it/s]\n\n 24%|██▍ | 24/100 [00:19<00:42, 1.78it/s]\u001b[A\n25it [00:19, 1.90it/s]\n\n 25%|██▌ | 25/100 [00:19<00:39, 1.90it/s]\u001b[A\n26it [00:21, 1.27it/s]\n\n 26%|██▌ | 26/100 [00:21<00:58, 1.27it/s]\u001b[A\n27it [00:21, 1.47it/s]\n\n 27%|██▋ | 27/100 [00:21<00:49, 1.47it/s]\u001b[A\n28it [00:22, 1.64it/s]\n\n 28%|██▊ | 28/100 [00:22<00:43, 1.64it/s]\u001b[A\n29it [00:22, 1.79it/s]\n\n 29%|██▉ | 29/100 [00:22<00:39, 1.79it/s]\u001b[A\n30it [00:23, 1.90it/s]\n\n 30%|███ | 30/100 [00:23<00:36, 1.90it/s]\u001b[A\n31it [00:24, 1.27it/s]\n\n 31%|███ | 31/100 [00:24<00:54, 1.27it/s]\u001b[A\n32it [00:24, 1.47it/s]\n\n 32%|███▏ | 32/100 [00:24<00:46, 1.47it/s]\u001b[A\n33it [00:25, 1.65it/s]\n\n 33%|███▎ | 33/100 [00:25<00:40, 1.65it/s]\u001b[A\n34it [00:25, 1.79it/s]\n\n 34%|███▍ | 34/100 [00:25<00:36, 1.79it/s]\u001b[A\n35it [00:26, 1.91it/s]\n\n 35%|███▌ | 35/100 [00:26<00:34, 1.91it/s]\u001b[A\n36it [00:27, 1.28it/s]\n\n 36%|███▌ | 36/100 [00:27<00:49, 1.28it/s]\u001b[A\n37it [00:28, 1.48it/s]\n\n 37%|███▋ | 37/100 [00:28<00:42, 1.48it/s]\u001b[A\n38it [00:28, 1.65it/s]\n\n 38%|███▊ | 38/100 [00:28<00:37, 1.65it/s]\u001b[A\n39it [00:28, 1.79it/s]\n\n 39%|███▉ | 39/100 [00:28<00:34, 1.79it/s]\u001b[A\n40it [00:29, 1.91it/s]\n\n 40%|████ | 40/100 [00:29<00:31, 1.91it/s]\u001b[A\n41it [00:30, 1.28it/s]\n\n 41%|████ | 41/100 [00:30<00:46, 1.28it/s]\u001b[A\n42it [00:31, 1.48it/s]\n\n 42%|████▏ | 42/100 [00:31<00:39, 1.48it/s]\u001b[A\n43it [00:31, 1.65it/s]\n\n 43%|████▎ | 43/100 [00:31<00:34, 1.65it/s]\u001b[A\n44it [00:32, 1.80it/s]\n\n 44%|████▍ | 44/100 [00:32<00:31, 1.80it/s]\u001b[A\n45it [00:32, 1.92it/s]\n\n 45%|████▌ | 45/100 [00:32<00:28, 1.92it/s]\u001b[A\n46it [00:33, 1.29it/s]\n\n 46%|████▌ | 46/100 [00:33<00:41, 1.29it/s]\u001b[A\n47it [00:34, 1.49it/s]\n\n 47%|████▋ | 47/100 [00:34<00:35, 1.49it/s]\u001b[A\n48it [00:34, 1.66it/s]\n\n 48%|████▊ | 48/100 [00:34<00:31, 1.66it/s]\u001b[A\n49it [00:35, 1.80it/s]\n\n 49%|████▉ | 49/100 [00:35<00:28, 1.80it/s]\u001b[A\n50it [00:35, 1.92it/s]\n\n 50%|█████ | 50/100 [00:35<00:26, 1.92it/s]\u001b[A\n51it [00:37, 1.29it/s]\n\n 51%|█████ | 51/100 [00:37<00:37, 1.29it/s]\u001b[A\n52it [00:37, 1.49it/s]\n\n 52%|█████▏ | 52/100 [00:37<00:32, 1.49it/s]\u001b[A\n53it [00:37, 1.66it/s]\n\n 53%|█████▎ | 53/100 [00:37<00:28, 1.66it/s]\u001b[A\n54it [00:38, 1.80it/s]\n\n 54%|█████▍ | 54/100 [00:38<00:25, 1.80it/s]\u001b[A\n55it [00:38, 1.92it/s]\n\n 55%|█████▌ | 55/100 [00:38<00:23, 1.92it/s]\u001b[A\n56it [00:40, 1.29it/s]\n\n 56%|█████▌ | 56/100 [00:40<00:34, 1.29it/s]\u001b[A\n57it [00:40, 1.49it/s]\n\n 57%|█████▋ | 57/100 [00:40<00:28, 1.49it/s]\u001b[A\n58it [00:41, 1.66it/s]\n\n 58%|█████▊ | 58/100 [00:41<00:25, 1.66it/s]\u001b[A\n59it [00:41, 1.80it/s]\n\n 59%|█████▉ | 59/100 [00:41<00:22, 1.80it/s]\u001b[A\n60it [00:41, 1.92it/s]\n\n 60%|██████ | 60/100 [00:41<00:20, 1.92it/s]\u001b[A\n61it [00:43, 1.29it/s]\n\n 61%|██████ | 61/100 [00:43<00:30, 1.29it/s]\u001b[A\n62it [00:43, 1.49it/s]\n\n 62%|██████▏ | 62/100 [00:43<00:25, 1.49it/s]\u001b[A\n63it [00:44, 1.66it/s]\n\n 63%|██████▎ | 63/100 [00:44<00:22, 1.66it/s]\u001b[A\n64it [00:44, 1.80it/s]\n\n 64%|██████▍ | 64/100 [00:44<00:20, 1.80it/s]\u001b[A\n65it [00:45, 1.91it/s]\n\n 65%|██████▌ | 65/100 [00:45<00:18, 1.91it/s]\u001b[A\n66it [00:46, 1.30it/s]\n\n 66%|██████▌ | 66/100 [00:46<00:26, 1.30it/s]\u001b[A\n67it [00:46, 1.50it/s]\n\n 67%|██████▋ | 67/100 [00:46<00:22, 1.50it/s]\u001b[A\n68it [00:47, 1.67it/s]\n\n 68%|██████▊ | 68/100 [00:47<00:19, 1.67it/s]\u001b[A\n69it [00:47, 1.80it/s]\n\n 69%|██████▉ | 69/100 [00:47<00:17, 1.80it/s]\u001b[A\n70it [00:48, 1.92it/s]\n\n 70%|███████ | 70/100 [00:48<00:15, 1.92it/s]\u001b[A\n71it [00:49, 1.31it/s]\n\n 71%|███████ | 71/100 [00:49<00:22, 1.31it/s]\u001b[A\n72it [00:49, 1.50it/s]\n\n 72%|███████▏ | 72/100 [00:49<00:18, 1.50it/s]\u001b[A\n73it [00:50, 1.67it/s]\n\n 73%|███████▎ | 73/100 [00:50<00:16, 1.67it/s]\u001b[A\n74it [00:50, 1.81it/s]\n\n 74%|███████▍ | 74/100 [00:50<00:14, 1.81it/s]\u001b[A\n75it [00:51, 1.92it/s]\n\n 75%|███████▌ | 75/100 [00:51<00:13, 1.92it/s]\u001b[A\n76it [00:52, 1.31it/s]\n\n 76%|███████▌ | 76/100 [00:52<00:18, 1.31it/s]\u001b[A\n77it [00:53, 1.50it/s]\n\n 77%|███████▋ | 77/100 [00:53<00:15, 1.50it/s]\u001b[A\n78it [00:53, 1.67it/s]\n\n 78%|███████▊ | 78/100 [00:53<00:13, 1.67it/s]\u001b[A\n79it [00:53, 1.81it/s]\n\n 79%|███████▉ | 79/100 [00:53<00:11, 1.81it/s]\u001b[A\n80it [00:54, 1.92it/s]\n\n 80%|████████ | 80/100 [00:54<00:10, 1.92it/s]\u001b[A\n81it [00:55, 1.31it/s]\n\n 81%|████████ | 81/100 [00:55<00:14, 1.31it/s]\u001b[A\n82it [00:56, 1.50it/s]\n\n 82%|████████▏ | 82/100 [00:56<00:11, 1.50it/s]\u001b[A\n83it [00:56, 1.67it/s]\n\n 83%|████████▎ | 83/100 [00:56<00:10, 1.67it/s]\u001b[A\n84it [00:57, 1.81it/s]\n\n 84%|████████▍ | 84/100 [00:57<00:08, 1.81it/s]\u001b[A\n85it [00:57, 1.92it/s]\n\n 85%|████████▌ | 85/100 [00:57<00:07, 1.92it/s]\u001b[A\n86it [00:58, 1.31it/s]\n\n 86%|████████▌ | 86/100 [00:58<00:10, 1.31it/s]\u001b[A\n87it [00:59, 1.50it/s]\n\n 87%|████████▋ | 87/100 [00:59<00:08, 1.50it/s]\u001b[A\n88it [00:59, 1.67it/s]\n\n 88%|████████▊ | 88/100 [00:59<00:07, 1.67it/s]\u001b[A\n89it [01:00, 1.81it/s]\n\n 89%|████████▉ | 89/100 [01:00<00:06, 1.81it/s]\u001b[A\n90it [01:00, 1.92it/s]\n\n 90%|█████████ | 90/100 [01:00<00:05, 1.92it/s]\u001b[A\n91it [01:01, 1.31it/s]\n\n 91%|█████████ | 91/100 [01:01<00:06, 1.31it/s]\u001b[A\n92it [01:02, 1.50it/s]\n\n 92%|█████████▏| 92/100 [01:02<00:05, 1.50it/s]\u001b[A\n93it [01:02, 1.67it/s]\n\n 93%|█████████▎| 93/100 [01:02<00:04, 1.67it/s]\u001b[A\n94it [01:03, 1.81it/s]\n\n 94%|█████████▍| 94/100 [01:03<00:03, 1.81it/s]\u001b[A\n95it [01:03, 1.92it/s]\n\n 95%|█████████▌| 95/100 [01:03<00:02, 1.92it/s]\u001b[A\n96it [01:05, 1.31it/s]\n\n 96%|█████████▌| 96/100 [01:05<00:03, 1.31it/s]\u001b[A\n97it [01:05, 1.50it/s]\n\n 97%|█████████▋| 97/100 [01:05<00:01, 1.50it/s]\u001b[A\n98it [01:05, 1.67it/s]\n\n 98%|█████████▊| 98/100 [01:05<00:01, 1.67it/s]\u001b[A\n99it [01:06, 1.81it/s]\n\n 99%|█████████▉| 99/100 [01:06<00:00, 1.81it/s]\u001b[A\n100it [01:06, 1.92it/s]\n\n100%|██████████| 100/100 [01:06<00:00, 1.92it/s]\u001b[A\n100%|██████████| 100/100 [01:06<00:00, 1.50it/s]\n\n100it [01:06, 1.50it/s]\nFinished generating with seed 908426086",
"metrics": {
"predict_time": 66.684719,
"total_time": 95.06482
},
"output": [
"https://replicate.delivery/mgxm/c3b85c9f-2379-452d-9444-360434a46063/current.png",
"https://replicate.delivery/mgxm/6d513e79-b821-43bd-b38f-2ef04e553481/current.png",
"https://replicate.delivery/mgxm/0508cbd9-faff-49eb-abd2-41f780fc9ed0/current.png",
"https://replicate.delivery/mgxm/4515a81a-0f34-42b2-b556-34ad34d39829/current.png",
"https://replicate.delivery/mgxm/ca3c00a8-8044-4bc0-9689-cde38208eaf3/current.png",
"https://replicate.delivery/mgxm/146f83cc-a695-4f23-ae64-7d4fe2d331af/current.png",
"https://replicate.delivery/mgxm/386db86e-62ae-4243-a417-61241d5fc73e/current.png",
"https://replicate.delivery/mgxm/94c6bb97-70fd-4204-84a9-1cdf63c08ba4/current.png",
"https://replicate.delivery/mgxm/02cd7c03-0cc5-4227-b0c9-57d24da85a45/current.png",
"https://replicate.delivery/mgxm/b3df1532-2f9b-407f-8ba7-d6eff10cc130/current.png",
"https://replicate.delivery/mgxm/b259525a-e173-4b66-9d54-3e48f4dc38a5/current.png",
"https://replicate.delivery/mgxm/6321ce0a-a12d-4af6-b1ee-aa909c18d06a/current.png",
"https://replicate.delivery/mgxm/a2e5acd9-d3f3-4dc9-afc4-7d7b60d1afea/current.png",
"https://replicate.delivery/mgxm/8c29c99e-3d60-46d4-9a26-80bd0c044370/current.png",
"https://replicate.delivery/mgxm/820e410f-8dee-47a0-9d1b-6f55175df408/current.png",
"https://replicate.delivery/mgxm/096e0167-6367-44ff-ae40-39f69fe6fdf1/current.png",
"https://replicate.delivery/mgxm/d589bde0-815a-4208-85f2-836519230b0e/current.png",
"https://replicate.delivery/mgxm/19d247fd-f4d9-4a08-ba0d-940c576df30e/current.png",
"https://replicate.delivery/mgxm/602aa48e-28d0-4900-9036-cc3d7f0f6a75/current.png",
"https://replicate.delivery/mgxm/8edd85e6-7963-4d20-b282-5030b79e732c/current.png"
],
"started_at": "2022-06-05T03:34:56.952316Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/6kabc6ksanea7nadevmu26n5uy",
"cancel": "https://api.replicate.com/v1/predictions/6kabc6ksanea7nadevmu26n5uy/cancel"
},
"version": "818c3886693975754e0d8962fa51bd967c8a4a332e123a6099086f08d068c49f"
}
Encoding text with BERT
Encoding text with CLIP
Using aesthetic embedding 9 with weight 0.5
Loading image
Using inpaint model but no image is provided. Initializing with zeros.
Packing CLIP and BERT embeddings into kwargs
Running diffusion...
0it [00:00, ?it/s]
0%| | 0/100 [00:00<?, ?it/s]
1it [00:02, 2.77s/it]
1%| | 1/100 [00:02<04:34, 2.77s/it]
2it [00:04, 2.19s/it]
2%|▏ | 2/100 [00:04<03:34, 2.19s/it]
3it [00:06, 2.00s/it]
3%|▎ | 3/100 [00:06<03:14, 2.00s/it]
4it [00:06, 1.39s/it]
4%|▍ | 4/100 [00:06<02:13, 1.39s/it]
5it [00:07, 1.05s/it]
5%|▌ | 5/100 [00:07<01:39, 1.05s/it]
6it [00:08, 1.18s/it]
6%|▌ | 6/100 [00:08<01:50, 1.18s/it]
7it [00:09, 1.07it/s]
7%|▋ | 7/100 [00:09<01:26, 1.07it/s]
8it [00:09, 1.28it/s]
8%|▊ | 8/100 [00:09<01:11, 1.28it/s]
9it [00:09, 1.48it/s]
9%|▉ | 9/100 [00:09<01:01, 1.48it/s]
10it [00:10, 1.65it/s]
10%|█ | 10/100 [00:10<00:54, 1.65it/s]
11it [00:11, 1.17it/s]
11%|█ | 11/100 [00:11<01:15, 1.17it/s]
12it [00:12, 1.38it/s]
12%|█▏ | 12/100 [00:12<01:03, 1.38it/s]
13it [00:12, 1.56it/s]
13%|█▎ | 13/100 [00:12<00:55, 1.56it/s]
14it [00:13, 1.72it/s]
14%|█▍ | 14/100 [00:13<00:50, 1.72it/s]
15it [00:13, 1.85it/s]
15%|█▌ | 15/100 [00:13<00:45, 1.85it/s]
16it [00:15, 1.25it/s]
16%|█▌ | 16/100 [00:15<01:07, 1.25it/s]
17it [00:15, 1.45it/s]
17%|█▋ | 17/100 [00:15<00:57, 1.45it/s]
18it [00:15, 1.62it/s]
18%|█▊ | 18/100 [00:15<00:50, 1.62it/s]
19it [00:16, 1.77it/s]
19%|█▉ | 19/100 [00:16<00:45, 1.77it/s]
20it [00:16, 1.89it/s]
20%|██ | 20/100 [00:16<00:42, 1.89it/s]
21it [00:18, 1.26it/s]
21%|██ | 21/100 [00:18<01:02, 1.26it/s]
22it [00:18, 1.46it/s]
22%|██▏ | 22/100 [00:18<00:53, 1.46it/s]
23it [00:19, 1.64it/s]
23%|██▎ | 23/100 [00:19<00:47, 1.64it/s]
24it [00:19, 1.78it/s]
24%|██▍ | 24/100 [00:19<00:42, 1.78it/s]
25it [00:19, 1.90it/s]
25%|██▌ | 25/100 [00:19<00:39, 1.90it/s]
26it [00:21, 1.27it/s]
26%|██▌ | 26/100 [00:21<00:58, 1.27it/s]
27it [00:21, 1.47it/s]
27%|██▋ | 27/100 [00:21<00:49, 1.47it/s]
28it [00:22, 1.64it/s]
28%|██▊ | 28/100 [00:22<00:43, 1.64it/s]
29it [00:22, 1.79it/s]
29%|██▉ | 29/100 [00:22<00:39, 1.79it/s]
30it [00:23, 1.90it/s]
30%|███ | 30/100 [00:23<00:36, 1.90it/s]
31it [00:24, 1.27it/s]
31%|███ | 31/100 [00:24<00:54, 1.27it/s]
32it [00:24, 1.47it/s]
32%|███▏ | 32/100 [00:24<00:46, 1.47it/s]
33it [00:25, 1.65it/s]
33%|███▎ | 33/100 [00:25<00:40, 1.65it/s]
34it [00:25, 1.79it/s]
34%|███▍ | 34/100 [00:25<00:36, 1.79it/s]
35it [00:26, 1.91it/s]
35%|███▌ | 35/100 [00:26<00:34, 1.91it/s]
36it [00:27, 1.28it/s]
36%|███▌ | 36/100 [00:27<00:49, 1.28it/s]
37it [00:28, 1.48it/s]
37%|███▋ | 37/100 [00:28<00:42, 1.48it/s]
38it [00:28, 1.65it/s]
38%|███▊ | 38/100 [00:28<00:37, 1.65it/s]
39it [00:28, 1.79it/s]
39%|███▉ | 39/100 [00:28<00:34, 1.79it/s]
40it [00:29, 1.91it/s]
40%|████ | 40/100 [00:29<00:31, 1.91it/s]
41it [00:30, 1.28it/s]
41%|████ | 41/100 [00:30<00:46, 1.28it/s]
42it [00:31, 1.48it/s]
42%|████▏ | 42/100 [00:31<00:39, 1.48it/s]
43it [00:31, 1.65it/s]
43%|████▎ | 43/100 [00:31<00:34, 1.65it/s]
44it [00:32, 1.80it/s]
44%|████▍ | 44/100 [00:32<00:31, 1.80it/s]
45it [00:32, 1.92it/s]
45%|████▌ | 45/100 [00:32<00:28, 1.92it/s]
46it [00:33, 1.29it/s]
46%|████▌ | 46/100 [00:33<00:41, 1.29it/s]
47it [00:34, 1.49it/s]
47%|████▋ | 47/100 [00:34<00:35, 1.49it/s]
48it [00:34, 1.66it/s]
48%|████▊ | 48/100 [00:34<00:31, 1.66it/s]
49it [00:35, 1.80it/s]
49%|████▉ | 49/100 [00:35<00:28, 1.80it/s]
50it [00:35, 1.92it/s]
50%|█████ | 50/100 [00:35<00:26, 1.92it/s]
51it [00:37, 1.29it/s]
51%|█████ | 51/100 [00:37<00:37, 1.29it/s]
52it [00:37, 1.49it/s]
52%|█████▏ | 52/100 [00:37<00:32, 1.49it/s]
53it [00:37, 1.66it/s]
53%|█████▎ | 53/100 [00:37<00:28, 1.66it/s]
54it [00:38, 1.80it/s]
54%|█████▍ | 54/100 [00:38<00:25, 1.80it/s]
55it [00:38, 1.92it/s]
55%|█████▌ | 55/100 [00:38<00:23, 1.92it/s]
56it [00:40, 1.29it/s]
56%|█████▌ | 56/100 [00:40<00:34, 1.29it/s]
57it [00:40, 1.49it/s]
57%|█████▋ | 57/100 [00:40<00:28, 1.49it/s]
58it [00:41, 1.66it/s]
58%|█████▊ | 58/100 [00:41<00:25, 1.66it/s]
59it [00:41, 1.80it/s]
59%|█████▉ | 59/100 [00:41<00:22, 1.80it/s]
60it [00:41, 1.92it/s]
60%|██████ | 60/100 [00:41<00:20, 1.92it/s]
61it [00:43, 1.29it/s]
61%|██████ | 61/100 [00:43<00:30, 1.29it/s]
62it [00:43, 1.49it/s]
62%|██████▏ | 62/100 [00:43<00:25, 1.49it/s]
63it [00:44, 1.66it/s]
63%|██████▎ | 63/100 [00:44<00:22, 1.66it/s]
64it [00:44, 1.80it/s]
64%|██████▍ | 64/100 [00:44<00:20, 1.80it/s]
65it [00:45, 1.91it/s]
65%|██████▌ | 65/100 [00:45<00:18, 1.91it/s]
66it [00:46, 1.30it/s]
66%|██████▌ | 66/100 [00:46<00:26, 1.30it/s]
67it [00:46, 1.50it/s]
67%|██████▋ | 67/100 [00:46<00:22, 1.50it/s]
68it [00:47, 1.67it/s]
68%|██████▊ | 68/100 [00:47<00:19, 1.67it/s]
69it [00:47, 1.80it/s]
69%|██████▉ | 69/100 [00:47<00:17, 1.80it/s]
70it [00:48, 1.92it/s]
70%|███████ | 70/100 [00:48<00:15, 1.92it/s]
71it [00:49, 1.31it/s]
71%|███████ | 71/100 [00:49<00:22, 1.31it/s]
72it [00:49, 1.50it/s]
72%|███████▏ | 72/100 [00:49<00:18, 1.50it/s]
73it [00:50, 1.67it/s]
73%|███████▎ | 73/100 [00:50<00:16, 1.67it/s]
74it [00:50, 1.81it/s]
74%|███████▍ | 74/100 [00:50<00:14, 1.81it/s]
75it [00:51, 1.92it/s]
75%|███████▌ | 75/100 [00:51<00:13, 1.92it/s]
76it [00:52, 1.31it/s]
76%|███████▌ | 76/100 [00:52<00:18, 1.31it/s]
77it [00:53, 1.50it/s]
77%|███████▋ | 77/100 [00:53<00:15, 1.50it/s]
78it [00:53, 1.67it/s]
78%|███████▊ | 78/100 [00:53<00:13, 1.67it/s]
79it [00:53, 1.81it/s]
79%|███████▉ | 79/100 [00:53<00:11, 1.81it/s]
80it [00:54, 1.92it/s]
80%|████████ | 80/100 [00:54<00:10, 1.92it/s]
81it [00:55, 1.31it/s]
81%|████████ | 81/100 [00:55<00:14, 1.31it/s]
82it [00:56, 1.50it/s]
82%|████████▏ | 82/100 [00:56<00:11, 1.50it/s]
83it [00:56, 1.67it/s]
83%|████████▎ | 83/100 [00:56<00:10, 1.67it/s]
84it [00:57, 1.81it/s]
84%|████████▍ | 84/100 [00:57<00:08, 1.81it/s]
85it [00:57, 1.92it/s]
85%|████████▌ | 85/100 [00:57<00:07, 1.92it/s]
86it [00:58, 1.31it/s]
86%|████████▌ | 86/100 [00:58<00:10, 1.31it/s]
87it [00:59, 1.50it/s]
87%|████████▋ | 87/100 [00:59<00:08, 1.50it/s]
88it [00:59, 1.67it/s]
88%|████████▊ | 88/100 [00:59<00:07, 1.67it/s]
89it [01:00, 1.81it/s]
89%|████████▉ | 89/100 [01:00<00:06, 1.81it/s]
90it [01:00, 1.92it/s]
90%|█████████ | 90/100 [01:00<00:05, 1.92it/s]
91it [01:01, 1.31it/s]
91%|█████████ | 91/100 [01:01<00:06, 1.31it/s]
92it [01:02, 1.50it/s]
92%|█████████▏| 92/100 [01:02<00:05, 1.50it/s]
93it [01:02, 1.67it/s]
93%|█████████▎| 93/100 [01:02<00:04, 1.67it/s]
94it [01:03, 1.81it/s]
94%|█████████▍| 94/100 [01:03<00:03, 1.81it/s]
95it [01:03, 1.92it/s]
95%|█████████▌| 95/100 [01:03<00:02, 1.92it/s]
96it [01:05, 1.31it/s]
96%|█████████▌| 96/100 [01:05<00:03, 1.31it/s]
97it [01:05, 1.50it/s]
97%|█████████▋| 97/100 [01:05<00:01, 1.50it/s]
98it [01:05, 1.67it/s]
98%|█████████▊| 98/100 [01:05<00:01, 1.67it/s]
99it [01:06, 1.81it/s]
99%|█████████▉| 99/100 [01:06<00:00, 1.81it/s]
100it [01:06, 1.92it/s]
100%|██████████| 100/100 [01:06<00:00, 1.92it/s]
100%|██████████| 100/100 [01:06<00:00, 1.50it/s]
100it [01:06, 1.50it/s]
Finished generating with seed 908426086