You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"laion-ai/ongo:9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040",
{
input: {
seed: -1,
steps: 100,
width: 384,
height: 384,
prompt: "bunny rabbit in style of van gogh",
negative: "",
batch_size: 3,
guidance_scale: 5,
aesthetic_rating: 8,
aesthetic_weight: 0.1,
init_skip_fraction: 0,
intermediate_outputs: false
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"laion-ai/ongo:9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040",
input={
"seed": -1,
"steps": 100,
"width": 384,
"height": 384,
"prompt": "bunny rabbit in style of van gogh",
"negative": "",
"batch_size": 3,
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1,
"init_skip_fraction": 0,
"intermediate_outputs": False
}
)
# The laion-ai/ongo model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/laion-ai/ongo/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run laion-ai/ongo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040",
"input": {
"seed": -1,
"steps": 100,
"width": 384,
"height": 384,
"prompt": "bunny rabbit in style of van gogh",
"negative": "",
"batch_size": 3,
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1,
"init_skip_fraction": 0,
"intermediate_outputs": false
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/laion-ai/ongo@sha256:9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040 \
-i 'seed=-1' \
-i 'steps=100' \
-i 'width=384' \
-i 'height=384' \
-i 'prompt="bunny rabbit in style of van gogh"' \
-i 'negative=""' \
-i 'batch_size=3' \
-i 'guidance_scale=5' \
-i 'aesthetic_rating=8' \
-i 'aesthetic_weight=0.1' \
-i 'init_skip_fraction=0' \
-i 'intermediate_outputs=false'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/laion-ai/ongo@sha256:9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "steps": 100, "width": 384, "height": 384, "prompt": "bunny rabbit in style of van gogh", "negative": "", "batch_size": 3, "guidance_scale": 5, "aesthetic_rating": 8, "aesthetic_weight": 0.1, "init_skip_fraction": 0, "intermediate_outputs": false } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.046. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-17T07:44:30.683816Z",
"created_at": "2022-07-17T07:43:35.219634Z",
"data_removed": false,
"error": null,
"id": "juxcjpeddzf23nxwhdcypwyd54",
"input": {
"seed": -1,
"steps": "100",
"width": "384",
"height": "384",
"prompt": "bunny rabbit in style of van gogh",
"batch_size": "3",
"guidance_scale": 5,
"aesthetic_rating": 8,
"aesthetic_weight": 0.1
},
"logs": "Using seed 3741438641\nRunning simulation for bunny rabbit in style of van gogh\nEncoding text embeddings with bunny rabbit in style of van gogh dimensions\nUsing aesthetic embedding 8 with weight 0.1\nRunning diffusion...\n\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:01<02:40, 1.62s/it]\n 2%|▏ | 2/100 [00:03<02:39, 1.63s/it]\n 3%|▎ | 3/100 [00:04<02:38, 1.63s/it]\n 4%|▍ | 4/100 [00:05<01:50, 1.15s/it]\n 5%|▌ | 5/100 [00:05<01:23, 1.14it/s]\n 6%|▌ | 6/100 [00:06<01:07, 1.39it/s]\n 7%|▋ | 7/100 [00:06<00:57, 1.62it/s]\n 8%|▊ | 8/100 [00:06<00:50, 1.82it/s]\n 9%|▉ | 9/100 [00:07<00:45, 1.98it/s]\n 10%|█ | 10/100 [00:07<00:42, 2.11it/s]\n 11%|█ | 11/100 [00:08<00:40, 2.20it/s]\n 12%|█▏ | 12/100 [00:08<00:38, 2.27it/s]\n 13%|█▎ | 13/100 [00:08<00:37, 2.32it/s]\n 14%|█▍ | 14/100 [00:09<00:36, 2.36it/s]\n 15%|█▌ | 15/100 [00:09<00:35, 2.39it/s]\n 16%|█▌ | 16/100 [00:10<00:34, 2.41it/s]\n 17%|█▋ | 17/100 [00:10<00:34, 2.42it/s]\n 18%|█▊ | 18/100 [00:10<00:33, 2.43it/s]\n 19%|█▉ | 19/100 [00:11<00:33, 2.44it/s]\n 20%|██ | 20/100 [00:11<00:32, 2.45it/s]\n 21%|██ | 21/100 [00:12<00:32, 2.45it/s]\n 22%|██▏ | 22/100 [00:12<00:31, 2.46it/s]\n 23%|██▎ | 23/100 [00:13<00:31, 2.46it/s]\n 24%|██▍ | 24/100 [00:13<00:30, 2.46it/s]\n 25%|██▌ | 25/100 [00:13<00:30, 2.46it/s]\n 26%|██▌ | 26/100 [00:14<00:30, 2.46it/s]\n 27%|██▋ | 27/100 [00:14<00:29, 2.46it/s]\n 28%|██▊ | 28/100 [00:15<00:29, 2.46it/s]\n 29%|██▉ | 29/100 [00:15<00:28, 2.46it/s]\n 30%|███ | 30/100 [00:15<00:28, 2.46it/s]\n 31%|███ | 31/100 [00:16<00:28, 2.46it/s]\n 32%|███▏ | 32/100 [00:16<00:27, 2.46it/s]\n 33%|███▎ | 33/100 [00:17<00:27, 2.47it/s]\n 34%|███▍ | 34/100 [00:17<00:26, 2.47it/s]\n 35%|███▌ | 35/100 [00:17<00:26, 2.47it/s]\n 36%|███▌ | 36/100 [00:18<00:25, 2.47it/s]\n 37%|███▋ | 37/100 [00:18<00:25, 2.47it/s]\n 38%|███▊ | 38/100 [00:19<00:25, 2.47it/s]\n 39%|███▉ | 39/100 [00:19<00:24, 2.46it/s]\n 40%|████ | 40/100 [00:19<00:24, 2.47it/s]\n 41%|████ | 41/100 [00:20<00:23, 2.46it/s]\n 42%|████▏ | 42/100 [00:20<00:23, 2.47it/s]\n 43%|████▎ | 43/100 [00:21<00:23, 2.47it/s]\n 44%|████▍ | 44/100 [00:21<00:22, 2.47it/s]\n 45%|████▌ | 45/100 [00:21<00:22, 2.47it/s]\n 46%|████▌ | 46/100 [00:22<00:21, 2.47it/s]\n 47%|████▋ | 47/100 [00:22<00:21, 2.47it/s]\n 48%|████▊ | 48/100 [00:23<00:21, 2.47it/s]\n 49%|████▉ | 49/100 [00:23<00:20, 2.47it/s]\n 50%|█████ | 50/100 [00:23<00:20, 2.47it/s]\n 51%|█████ | 51/100 [00:24<00:19, 2.47it/s]\n 52%|█████▏ | 52/100 [00:24<00:19, 2.47it/s]\n 53%|█████▎ | 53/100 [00:25<00:19, 2.47it/s]\n 54%|█████▍ | 54/100 [00:25<00:18, 2.47it/s]\n 55%|█████▌ | 55/100 [00:25<00:18, 2.47it/s]\n 56%|█████▌ | 56/100 [00:26<00:17, 2.48it/s]\n 57%|█████▋ | 57/100 [00:26<00:17, 2.48it/s]\n 58%|█████▊ | 58/100 [00:27<00:16, 2.48it/s]\n 59%|█████▉ | 59/100 [00:27<00:16, 2.48it/s]\n 60%|██████ | 60/100 [00:28<00:16, 2.48it/s]\n 61%|██████ | 61/100 [00:28<00:15, 2.48it/s]\n 62%|██████▏ | 62/100 [00:28<00:15, 2.48it/s]\n 63%|██████▎ | 63/100 [00:29<00:14, 2.48it/s]\n 64%|██████▍ | 64/100 [00:29<00:14, 2.49it/s]\n 65%|██████▌ | 65/100 [00:30<00:14, 2.49it/s]\n 66%|██████▌ | 66/100 [00:30<00:13, 2.48it/s]\n 67%|██████▋ | 67/100 [00:30<00:13, 2.49it/s]\n 68%|██████▊ | 68/100 [00:31<00:12, 2.49it/s]\n 69%|██████▉ | 69/100 [00:31<00:12, 2.49it/s]\n 70%|███████ | 70/100 [00:32<00:12, 2.49it/s]\n 71%|███████ | 71/100 [00:32<00:11, 2.48it/s]\n 72%|███████▏ | 72/100 [00:32<00:11, 2.49it/s]\n 73%|███████▎ | 73/100 [00:33<00:10, 2.49it/s]\n 74%|███████▍ | 74/100 [00:33<00:10, 2.50it/s]\n 75%|███████▌ | 75/100 [00:34<00:10, 2.49it/s]\n 76%|███████▌ | 76/100 [00:34<00:09, 2.49it/s]\n 77%|███████▋ | 77/100 [00:34<00:09, 2.49it/s]\n 78%|███████▊ | 78/100 [00:35<00:08, 2.49it/s]\n 79%|███████▉ | 79/100 [00:35<00:08, 2.49it/s]\n 80%|████████ | 80/100 [00:36<00:08, 2.49it/s]\n 81%|████████ | 81/100 [00:36<00:07, 2.48it/s]\n 82%|████████▏ | 82/100 [00:36<00:07, 2.49it/s]\n 83%|████████▎ | 83/100 [00:37<00:06, 2.49it/s]\n 84%|████████▍ | 84/100 [00:37<00:06, 2.49it/s]\n 85%|████████▌ | 85/100 [00:38<00:06, 2.49it/s]\n 86%|████████▌ | 86/100 [00:38<00:05, 2.49it/s]\n 87%|████████▋ | 87/100 [00:38<00:05, 2.49it/s]\n 88%|████████▊ | 88/100 [00:39<00:04, 2.50it/s]\n 89%|████████▉ | 89/100 [00:39<00:04, 2.49it/s]\n 90%|█████████ | 90/100 [00:40<00:04, 2.49it/s]\n 91%|█████████ | 91/100 [00:40<00:03, 2.49it/s]\n 92%|█████████▏| 92/100 [00:40<00:03, 2.49it/s]\n 93%|█████████▎| 93/100 [00:41<00:02, 2.49it/s]\n 94%|█████████▍| 94/100 [00:41<00:02, 2.49it/s]\n 95%|█████████▌| 95/100 [00:42<00:02, 2.50it/s]\n 96%|█████████▌| 96/100 [00:42<00:01, 2.50it/s]\n 97%|█████████▋| 97/100 [00:42<00:01, 2.49it/s]\n 98%|█████████▊| 98/100 [00:43<00:00, 2.50it/s]\n 99%|█████████▉| 99/100 [00:43<00:00, 2.50it/s]\n100%|██████████| 100/100 [00:44<00:00, 2.50it/s]\n100%|██████████| 100/100 [00:44<00:00, 2.27it/s]\nSaving final sample/s",
"metrics": {
"predict_time": 46.807893,
"total_time": 55.464182
},
"output": [
[
"https://replicate.delivery/mgxm/a33510a3-92b2-432e-a778-92753c78d936/current_0.png",
"https://replicate.delivery/mgxm/9ef7669c-4c7d-483d-b818-be78e5aa08ec/current_1.png",
"https://replicate.delivery/mgxm/9696c825-c8b3-4940-ab70-0717af035d9d/current_2.png"
]
],
"started_at": "2022-07-17T07:43:43.875923Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/juxcjpeddzf23nxwhdcypwyd54",
"cancel": "https://api.replicate.com/v1/predictions/juxcjpeddzf23nxwhdcypwyd54/cancel"
},
"version": "9ef304ed2499cfddc1ec4ff3bc1b657c03db722ac1e52577e3c42b97d176c040"
}
Using seed 3741438641
Running simulation for bunny rabbit in style of van gogh
Encoding text embeddings with bunny rabbit in style of van gogh dimensions
Using aesthetic embedding 8 with weight 0.1
Running diffusion...
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:01<02:40, 1.62s/it]
2%|▏ | 2/100 [00:03<02:39, 1.63s/it]
3%|▎ | 3/100 [00:04<02:38, 1.63s/it]
4%|▍ | 4/100 [00:05<01:50, 1.15s/it]
5%|▌ | 5/100 [00:05<01:23, 1.14it/s]
6%|▌ | 6/100 [00:06<01:07, 1.39it/s]
7%|▋ | 7/100 [00:06<00:57, 1.62it/s]
8%|▊ | 8/100 [00:06<00:50, 1.82it/s]
9%|▉ | 9/100 [00:07<00:45, 1.98it/s]
10%|█ | 10/100 [00:07<00:42, 2.11it/s]
11%|█ | 11/100 [00:08<00:40, 2.20it/s]
12%|█▏ | 12/100 [00:08<00:38, 2.27it/s]
13%|█▎ | 13/100 [00:08<00:37, 2.32it/s]
14%|█▍ | 14/100 [00:09<00:36, 2.36it/s]
15%|█▌ | 15/100 [00:09<00:35, 2.39it/s]
16%|█▌ | 16/100 [00:10<00:34, 2.41it/s]
17%|█▋ | 17/100 [00:10<00:34, 2.42it/s]
18%|█▊ | 18/100 [00:10<00:33, 2.43it/s]
19%|█▉ | 19/100 [00:11<00:33, 2.44it/s]
20%|██ | 20/100 [00:11<00:32, 2.45it/s]
21%|██ | 21/100 [00:12<00:32, 2.45it/s]
22%|██▏ | 22/100 [00:12<00:31, 2.46it/s]
23%|██▎ | 23/100 [00:13<00:31, 2.46it/s]
24%|██▍ | 24/100 [00:13<00:30, 2.46it/s]
25%|██▌ | 25/100 [00:13<00:30, 2.46it/s]
26%|██▌ | 26/100 [00:14<00:30, 2.46it/s]
27%|██▋ | 27/100 [00:14<00:29, 2.46it/s]
28%|██▊ | 28/100 [00:15<00:29, 2.46it/s]
29%|██▉ | 29/100 [00:15<00:28, 2.46it/s]
30%|███ | 30/100 [00:15<00:28, 2.46it/s]
31%|███ | 31/100 [00:16<00:28, 2.46it/s]
32%|███▏ | 32/100 [00:16<00:27, 2.46it/s]
33%|███▎ | 33/100 [00:17<00:27, 2.47it/s]
34%|███▍ | 34/100 [00:17<00:26, 2.47it/s]
35%|███▌ | 35/100 [00:17<00:26, 2.47it/s]
36%|███▌ | 36/100 [00:18<00:25, 2.47it/s]
37%|███▋ | 37/100 [00:18<00:25, 2.47it/s]
38%|███▊ | 38/100 [00:19<00:25, 2.47it/s]
39%|███▉ | 39/100 [00:19<00:24, 2.46it/s]
40%|████ | 40/100 [00:19<00:24, 2.47it/s]
41%|████ | 41/100 [00:20<00:23, 2.46it/s]
42%|████▏ | 42/100 [00:20<00:23, 2.47it/s]
43%|████▎ | 43/100 [00:21<00:23, 2.47it/s]
44%|████▍ | 44/100 [00:21<00:22, 2.47it/s]
45%|████▌ | 45/100 [00:21<00:22, 2.47it/s]
46%|████▌ | 46/100 [00:22<00:21, 2.47it/s]
47%|████▋ | 47/100 [00:22<00:21, 2.47it/s]
48%|████▊ | 48/100 [00:23<00:21, 2.47it/s]
49%|████▉ | 49/100 [00:23<00:20, 2.47it/s]
50%|█████ | 50/100 [00:23<00:20, 2.47it/s]
51%|█████ | 51/100 [00:24<00:19, 2.47it/s]
52%|█████▏ | 52/100 [00:24<00:19, 2.47it/s]
53%|█████▎ | 53/100 [00:25<00:19, 2.47it/s]
54%|█████▍ | 54/100 [00:25<00:18, 2.47it/s]
55%|█████▌ | 55/100 [00:25<00:18, 2.47it/s]
56%|█████▌ | 56/100 [00:26<00:17, 2.48it/s]
57%|█████▋ | 57/100 [00:26<00:17, 2.48it/s]
58%|█████▊ | 58/100 [00:27<00:16, 2.48it/s]
59%|█████▉ | 59/100 [00:27<00:16, 2.48it/s]
60%|██████ | 60/100 [00:28<00:16, 2.48it/s]
61%|██████ | 61/100 [00:28<00:15, 2.48it/s]
62%|██████▏ | 62/100 [00:28<00:15, 2.48it/s]
63%|██████▎ | 63/100 [00:29<00:14, 2.48it/s]
64%|██████▍ | 64/100 [00:29<00:14, 2.49it/s]
65%|██████▌ | 65/100 [00:30<00:14, 2.49it/s]
66%|██████▌ | 66/100 [00:30<00:13, 2.48it/s]
67%|██████▋ | 67/100 [00:30<00:13, 2.49it/s]
68%|██████▊ | 68/100 [00:31<00:12, 2.49it/s]
69%|██████▉ | 69/100 [00:31<00:12, 2.49it/s]
70%|███████ | 70/100 [00:32<00:12, 2.49it/s]
71%|███████ | 71/100 [00:32<00:11, 2.48it/s]
72%|███████▏ | 72/100 [00:32<00:11, 2.49it/s]
73%|███████▎ | 73/100 [00:33<00:10, 2.49it/s]
74%|███████▍ | 74/100 [00:33<00:10, 2.50it/s]
75%|███████▌ | 75/100 [00:34<00:10, 2.49it/s]
76%|███████▌ | 76/100 [00:34<00:09, 2.49it/s]
77%|███████▋ | 77/100 [00:34<00:09, 2.49it/s]
78%|███████▊ | 78/100 [00:35<00:08, 2.49it/s]
79%|███████▉ | 79/100 [00:35<00:08, 2.49it/s]
80%|████████ | 80/100 [00:36<00:08, 2.49it/s]
81%|████████ | 81/100 [00:36<00:07, 2.48it/s]
82%|████████▏ | 82/100 [00:36<00:07, 2.49it/s]
83%|████████▎ | 83/100 [00:37<00:06, 2.49it/s]
84%|████████▍ | 84/100 [00:37<00:06, 2.49it/s]
85%|████████▌ | 85/100 [00:38<00:06, 2.49it/s]
86%|████████▌ | 86/100 [00:38<00:05, 2.49it/s]
87%|████████▋ | 87/100 [00:38<00:05, 2.49it/s]
88%|████████▊ | 88/100 [00:39<00:04, 2.50it/s]
89%|████████▉ | 89/100 [00:39<00:04, 2.49it/s]
90%|█████████ | 90/100 [00:40<00:04, 2.49it/s]
91%|█████████ | 91/100 [00:40<00:03, 2.49it/s]
92%|█████████▏| 92/100 [00:40<00:03, 2.49it/s]
93%|█████████▎| 93/100 [00:41<00:02, 2.49it/s]
94%|█████████▍| 94/100 [00:41<00:02, 2.49it/s]
95%|█████████▌| 95/100 [00:42<00:02, 2.50it/s]
96%|█████████▌| 96/100 [00:42<00:01, 2.50it/s]
97%|█████████▋| 97/100 [00:42<00:01, 2.49it/s]
98%|█████████▊| 98/100 [00:43<00:00, 2.50it/s]
99%|█████████▉| 99/100 [00:43<00:00, 2.50it/s]
100%|██████████| 100/100 [00:44<00:00, 2.50it/s]
100%|██████████| 100/100 [00:44<00:00, 2.27it/s]
Saving final sample/s