You're looking at a specific version of this model. Jump to the model overview.
lightweight-ai /controlnet_test:5ad6a0b3
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lightweight-ai/controlnet_test using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lightweight-ai/controlnet_test:5ad6a0b371b0e0da4f834ff4bdcc27513b1a01777b2656a0974687a96f1740dc",
{
input: {
loras: [],
width: 1024,
height: 1024,
prompt: "A bohemian-style female travel blogger with sun-kissed skin and messy beach waves",
inpaint: false,
controlnet: false,
lora_scales: [],
num_outputs: 1,
control_type: "canny",
control_image: "",
output_format: "png",
output_quality: 100,
prompt_strength: 0.8,
control_strength: 0.2,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lightweight-ai/controlnet_test using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lightweight-ai/controlnet_test:5ad6a0b371b0e0da4f834ff4bdcc27513b1a01777b2656a0974687a96f1740dc",
input={
"loras": [],
"width": 1024,
"height": 1024,
"prompt": "A bohemian-style female travel blogger with sun-kissed skin and messy beach waves",
"inpaint": False,
"controlnet": False,
"lora_scales": [],
"num_outputs": 1,
"control_type": "canny",
"control_image": "",
"output_format": "png",
"output_quality": 100,
"prompt_strength": 0.8,
"control_strength": 0.2,
"num_inference_steps": 28
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lightweight-ai/controlnet_test using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lightweight-ai/controlnet_test:5ad6a0b371b0e0da4f834ff4bdcc27513b1a01777b2656a0974687a96f1740dc",
"input": {
"loras": [],
"width": 1024,
"height": 1024,
"prompt": "A bohemian-style female travel blogger with sun-kissed skin and messy beach waves",
"inpaint": false,
"controlnet": false,
"lora_scales": [],
"num_outputs": 1,
"control_type": "canny",
"control_image": "",
"output_format": "png",
"output_quality": 100,
"prompt_strength": 0.8,
"control_strength": 0.2,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lightweight-ai/controlnet_test@sha256:5ad6a0b371b0e0da4f834ff4bdcc27513b1a01777b2656a0974687a96f1740dc \
-i 'loras=[]' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A bohemian-style female travel blogger with sun-kissed skin and messy beach waves"' \
-i 'inpaint=false' \
-i 'controlnet=false' \
-i 'lora_scales=[]' \
-i 'num_outputs=1' \
-i 'control_type="canny"' \
-i 'control_image=""' \
-i 'output_format="png"' \
-i 'output_quality=100' \
-i 'prompt_strength=0.8' \
-i 'control_strength=0.2' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lightweight-ai/controlnet_test@sha256:5ad6a0b371b0e0da4f834ff4bdcc27513b1a01777b2656a0974687a96f1740dc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "loras": [], "width": 1024, "height": 1024, "prompt": "A bohemian-style female travel blogger with sun-kissed skin and messy beach waves", "inpaint": false, "controlnet": false, "lora_scales": [], "num_outputs": 1, "control_type": "canny", "control_image": "", "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "control_strength": 0.2, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.