You're looking at a specific version of this model. Jump to the model overview.
martintmv-git /realistic-emoji:2cb26fa1
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run martintmv-git/realistic-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"martintmv-git/realistic-emoji:2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe",
{
input: {
width: 768,
height: 768,
prompt: "A TOK emoji of Joe Rogan, photorealistic, white background",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 25
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run martintmv-git/realistic-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"martintmv-git/realistic-emoji:2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe",
input={
"width": 768,
"height": 768,
"prompt": "A TOK emoji of Joe Rogan, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run martintmv-git/realistic-emoji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe",
"input": {
"width": 768,
"height": 768,
"prompt": "A TOK emoji of Joe Rogan, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/martintmv-git/realistic-emoji@sha256:2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe \
-i 'width=768' \
-i 'height=768' \
-i 'prompt="A TOK emoji of Joe Rogan, photorealistic, white background"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=25'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/martintmv-git/realistic-emoji@sha256:2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 768, "height": 768, "prompt": "A TOK emoji of Joe Rogan, photorealistic, white background", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0023. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-01-16T01:00:10.521962Z",
"created_at": "2024-01-16T00:58:52.144503Z",
"data_removed": false,
"error": null,
"id": "ecwe6ntb5nap23xoa22athxasq",
"input": {
"width": 768,
"height": 768,
"prompt": "A TOK emoji of Joe Rogan, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
},
"logs": "Using seed: 11182\nEnsuring enough disk space...\nFree disk space: 1647913037824\nDownloading weights: https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar\n2024-01-16T00:59:46Z | INFO | [ Initiating ] dest=/src/weights-cache/78ae52d934a92074 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar\n2024-01-16T00:59:51Z | INFO | [ Complete ] dest=/src/weights-cache/78ae52d934a92074 size=\"186 MB\" total_elapsed=5.901s url=https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar\nb''\nDownloaded weights in 6.0366127490997314 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> emoji of Joe Rogan, photorealistic, white background\ntxt2img mode\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:20, 1.19it/s]\n 8%|▊ | 2/25 [00:01<00:10, 2.27it/s]\n 12%|█▏ | 3/25 [00:01<00:06, 3.20it/s]\n 16%|█▌ | 4/25 [00:01<00:05, 3.96it/s]\n 20%|██ | 5/25 [00:01<00:04, 4.57it/s]\n 24%|██▍ | 6/25 [00:01<00:03, 5.02it/s]\n 28%|██▊ | 7/25 [00:01<00:03, 5.37it/s]\n 32%|███▏ | 8/25 [00:01<00:03, 5.62it/s]\n 36%|███▌ | 9/25 [00:02<00:02, 5.80it/s]\n 40%|████ | 10/25 [00:02<00:02, 5.92it/s]\n 44%|████▍ | 11/25 [00:02<00:02, 6.02it/s]\n 48%|████▊ | 12/25 [00:02<00:02, 6.09it/s]\n 52%|█████▏ | 13/25 [00:02<00:01, 6.13it/s]\n 56%|█████▌ | 14/25 [00:02<00:01, 6.16it/s]\n 60%|██████ | 15/25 [00:03<00:01, 6.17it/s]\n 64%|██████▍ | 16/25 [00:03<00:01, 6.18it/s]\n 68%|██████▊ | 17/25 [00:03<00:01, 6.19it/s]\n 72%|███████▏ | 18/25 [00:03<00:01, 6.21it/s]\n 76%|███████▌ | 19/25 [00:03<00:00, 6.21it/s]\n 80%|████████ | 20/25 [00:03<00:00, 6.22it/s]\n 84%|████████▍ | 21/25 [00:04<00:00, 6.22it/s]\n 88%|████████▊ | 22/25 [00:04<00:00, 6.22it/s]\n 92%|█████████▏| 23/25 [00:04<00:00, 6.22it/s]\n 96%|█████████▌| 24/25 [00:04<00:00, 6.22it/s]\n100%|██████████| 25/25 [00:04<00:00, 6.22it/s]\n100%|██████████| 25/25 [00:04<00:00, 5.33it/s]",
"metrics": {
"predict_time": 24.594936,
"total_time": 78.377459
},
"output": [
"https://replicate.delivery/pbxt/9M1s6lwCzipmDRXNHasqQ8X0knAzX0uYbY9CRaY4lbSGHOjE/out-0.png"
],
"started_at": "2024-01-16T00:59:45.927026Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ecwe6ntb5nap23xoa22athxasq",
"cancel": "https://api.replicate.com/v1/predictions/ecwe6ntb5nap23xoa22athxasq/cancel"
},
"version": "2cb26fa1db75e2d61b944d35fb239005d07118ef8047fe2f8d68ed5767957abe"
}
Using seed: 11182
Ensuring enough disk space...
Free disk space: 1647913037824
Downloading weights: https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar
2024-01-16T00:59:46Z | INFO | [ Initiating ] dest=/src/weights-cache/78ae52d934a92074 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar
2024-01-16T00:59:51Z | INFO | [ Complete ] dest=/src/weights-cache/78ae52d934a92074 size="186 MB" total_elapsed=5.901s url=https://replicate.delivery/pbxt/5tWnKqhDTVKZBVpnQaZ9VNnrzXeRW8xSTcGaV2vI6oYrrbCJA/trained_model.tar
b''
Downloaded weights in 6.0366127490997314 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A <s0><s1> emoji of Joe Rogan, photorealistic, white background
txt2img mode
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:20, 1.19it/s]
8%|▊ | 2/25 [00:01<00:10, 2.27it/s]
12%|█▏ | 3/25 [00:01<00:06, 3.20it/s]
16%|█▌ | 4/25 [00:01<00:05, 3.96it/s]
20%|██ | 5/25 [00:01<00:04, 4.57it/s]
24%|██▍ | 6/25 [00:01<00:03, 5.02it/s]
28%|██▊ | 7/25 [00:01<00:03, 5.37it/s]
32%|███▏ | 8/25 [00:01<00:03, 5.62it/s]
36%|███▌ | 9/25 [00:02<00:02, 5.80it/s]
40%|████ | 10/25 [00:02<00:02, 5.92it/s]
44%|████▍ | 11/25 [00:02<00:02, 6.02it/s]
48%|████▊ | 12/25 [00:02<00:02, 6.09it/s]
52%|█████▏ | 13/25 [00:02<00:01, 6.13it/s]
56%|█████▌ | 14/25 [00:02<00:01, 6.16it/s]
60%|██████ | 15/25 [00:03<00:01, 6.17it/s]
64%|██████▍ | 16/25 [00:03<00:01, 6.18it/s]
68%|██████▊ | 17/25 [00:03<00:01, 6.19it/s]
72%|███████▏ | 18/25 [00:03<00:01, 6.21it/s]
76%|███████▌ | 19/25 [00:03<00:00, 6.21it/s]
80%|████████ | 20/25 [00:03<00:00, 6.22it/s]
84%|████████▍ | 21/25 [00:04<00:00, 6.22it/s]
88%|████████▊ | 22/25 [00:04<00:00, 6.22it/s]
92%|█████████▏| 23/25 [00:04<00:00, 6.22it/s]
96%|█████████▌| 24/25 [00:04<00:00, 6.22it/s]
100%|██████████| 25/25 [00:04<00:00, 6.22it/s]
100%|██████████| 25/25 [00:04<00:00, 5.33it/s]