You're looking at a specific version of this model. Jump to the model overview.
mbentley124 /openjourney-img2img:c49a9422
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run mbentley124/openjourney-img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"mbentley124/openjourney-img2img:c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3",
{
input: {
image: "https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg",
prompt: "greg rutkowski, cartoon style, trending on artstation",
strength: 0.5,
guidance_scale: 12.5,
negative_prompt: "deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur",
num_inference_steps: 50,
num_images_per_prompt: 1
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run mbentley124/openjourney-img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"mbentley124/openjourney-img2img:c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3",
input={
"image": "https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg",
"prompt": "greg rutkowski, cartoon style, trending on artstation",
"strength": 0.5,
"guidance_scale": 12.5,
"negative_prompt": "deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur",
"num_inference_steps": 50,
"num_images_per_prompt": 1
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run mbentley124/openjourney-img2img using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3",
"input": {
"image": "https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg",
"prompt": "greg rutkowski, cartoon style, trending on artstation",
"strength": 0.5,
"guidance_scale": 12.5,
"negative_prompt": "deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur",
"num_inference_steps": 50,
"num_images_per_prompt": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run mbentley124/openjourney-img2img using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/mbentley124/openjourney-img2img@sha256:c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3 \
-i 'image="https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg"' \
-i 'prompt="greg rutkowski, cartoon style, trending on artstation"' \
-i 'strength=0.5' \
-i 'guidance_scale=12.5' \
-i 'negative_prompt="deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur"' \
-i 'num_inference_steps=50' \
-i 'num_images_per_prompt=1'
To learn more, take a look at the Cog documentation.
Pull and run mbentley124/openjourney-img2img using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/mbentley124/openjourney-img2img@sha256:c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg", "prompt": "greg rutkowski, cartoon style, trending on artstation", "strength": 0.5, "guidance_scale": 12.5, "negative_prompt": "deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur", "num_inference_steps": 50, "num_images_per_prompt": 1 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.047. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-02-05T01:24:32.340061Z",
"created_at": "2023-02-05T01:24:27.682347Z",
"data_removed": false,
"error": null,
"id": "ql33zw43avbdzdejpdyah76tey",
"input": {
"image": "https://replicate.delivery/pbxt/IG543JPETYcXioOfapbLf9BNRLX41jqAcZigtLIh7E4kVTva/person.jpeg",
"prompt": "greg rutkowski, cartoon style, trending on artstation",
"strength": "0.5",
"guidance_scale": 12.5,
"negative_prompt": "deformed, blotches, blurry, saturated, maximalist, cripple, ugly, additional arms, additional legs, additional head, two heads, multiple people, group of people, blur",
"num_inference_steps": "50",
"num_images_per_prompt": "1"
},
"logs": "0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:07, 3.34it/s]\n 8%|▊ | 2/25 [00:00<00:04, 5.39it/s]\n 12%|█▏ | 3/25 [00:00<00:03, 6.71it/s]\n 16%|█▌ | 4/25 [00:00<00:02, 7.59it/s]\n 20%|██ | 5/25 [00:00<00:02, 8.18it/s]\n 24%|██▍ | 6/25 [00:00<00:02, 8.58it/s]\n 28%|██▊ | 7/25 [00:00<00:02, 8.85it/s]\n 32%|███▏ | 8/25 [00:01<00:01, 9.04it/s]\n 36%|███▌ | 9/25 [00:01<00:01, 9.17it/s]\n 40%|████ | 10/25 [00:01<00:01, 9.27it/s]\n 44%|████▍ | 11/25 [00:01<00:01, 9.33it/s]\n 48%|████▊ | 12/25 [00:01<00:01, 9.37it/s]\n 52%|█████▏ | 13/25 [00:01<00:01, 9.40it/s]\n 56%|█████▌ | 14/25 [00:01<00:01, 9.41it/s]\n 60%|██████ | 15/25 [00:01<00:01, 9.43it/s]\n 64%|██████▍ | 16/25 [00:01<00:00, 9.43it/s]\n 68%|██████▊ | 17/25 [00:01<00:00, 9.43it/s]\n 72%|███████▏ | 18/25 [00:02<00:00, 9.44it/s]\n 76%|███████▌ | 19/25 [00:02<00:00, 9.45it/s]\n 80%|████████ | 20/25 [00:02<00:00, 9.46it/s]\n 84%|████████▍ | 21/25 [00:02<00:00, 9.46it/s]\n 88%|████████▊ | 22/25 [00:02<00:00, 9.47it/s]\n 92%|█████████▏| 23/25 [00:02<00:00, 9.47it/s]\n 96%|█████████▌| 24/25 [00:02<00:00, 9.47it/s]\n100%|██████████| 25/25 [00:02<00:00, 9.48it/s]\n100%|██████████| 25/25 [00:02<00:00, 8.82it/s]",
"metrics": {
"predict_time": 4.312294,
"total_time": 4.657714
},
"output": [
"https://replicate.delivery/pbxt/p5SEzDoII2qdKVSuxx9Fe1z6qswFfKBRbGn7feov0f3fT3yGE/out-0.png"
],
"started_at": "2023-02-05T01:24:28.027767Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ql33zw43avbdzdejpdyah76tey",
"cancel": "https://api.replicate.com/v1/predictions/ql33zw43avbdzdejpdyah76tey/cancel"
},
"version": "c49a9422a0d4303e6b8a8d2cf35d4d1b1fd49d32b946f6d5c74b78886b7e5dc3"
}
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:07, 3.34it/s]
8%|▊ | 2/25 [00:00<00:04, 5.39it/s]
12%|█▏ | 3/25 [00:00<00:03, 6.71it/s]
16%|█▌ | 4/25 [00:00<00:02, 7.59it/s]
20%|██ | 5/25 [00:00<00:02, 8.18it/s]
24%|██▍ | 6/25 [00:00<00:02, 8.58it/s]
28%|██▊ | 7/25 [00:00<00:02, 8.85it/s]
32%|███▏ | 8/25 [00:01<00:01, 9.04it/s]
36%|███▌ | 9/25 [00:01<00:01, 9.17it/s]
40%|████ | 10/25 [00:01<00:01, 9.27it/s]
44%|████▍ | 11/25 [00:01<00:01, 9.33it/s]
48%|████▊ | 12/25 [00:01<00:01, 9.37it/s]
52%|█████▏ | 13/25 [00:01<00:01, 9.40it/s]
56%|█████▌ | 14/25 [00:01<00:01, 9.41it/s]
60%|██████ | 15/25 [00:01<00:01, 9.43it/s]
64%|██████▍ | 16/25 [00:01<00:00, 9.43it/s]
68%|██████▊ | 17/25 [00:01<00:00, 9.43it/s]
72%|███████▏ | 18/25 [00:02<00:00, 9.44it/s]
76%|███████▌ | 19/25 [00:02<00:00, 9.45it/s]
80%|████████ | 20/25 [00:02<00:00, 9.46it/s]
84%|████████▍ | 21/25 [00:02<00:00, 9.46it/s]
88%|████████▊ | 22/25 [00:02<00:00, 9.47it/s]
92%|█████████▏| 23/25 [00:02<00:00, 9.47it/s]
96%|█████████▌| 24/25 [00:02<00:00, 9.47it/s]
100%|██████████| 25/25 [00:02<00:00, 9.48it/s]
100%|██████████| 25/25 [00:02<00:00, 8.82it/s]