You're looking at a specific version of this model. Jump to the model overview.
mdzor /game-assets:4d1ebf99
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run mdzor/game-assets using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"mdzor/game-assets:4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add",
{
input: {
width: 1024,
height: 1024,
prompt: "TOK, a prince wearing golden armor",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run mdzor/game-assets using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"mdzor/game-assets:4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add",
input={
"width": 1024,
"height": 1024,
"prompt": "TOK, a prince wearing golden armor",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run mdzor/game-assets using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add",
"input": {
"width": 1024,
"height": 1024,
"prompt": "TOK, a prince wearing golden armor",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/mdzor/game-assets@sha256:4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="TOK, a prince wearing golden armor"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/mdzor/game-assets@sha256:4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "TOK, a prince wearing golden armor", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-04-23T08:22:00.004952Z",
"created_at": "2024-04-23T08:20:17.009000Z",
"data_removed": false,
"error": null,
"id": "w3rrr9wny5rgj0cf185a6pedp0",
"input": {
"width": 1024,
"height": 1024,
"prompt": "TOK, a prince wearing golden armor",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 21770\nEnsuring enough disk space...\nFree disk space: 1596964429824\nDownloading weights: https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar\n2024-04-23T08:21:42Z | INFO | [ Initiating ] dest=/src/weights-cache/1de1469304b3a9ac minimum_chunk_size=150M url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar\n2024-04-23T08:21:44Z | INFO | [ Complete ] dest=/src/weights-cache/1de1469304b3a9ac size=\"186 MB\" total_elapsed=1.727s url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar\nb''\nDownloaded weights in 1.7760472297668457 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, a prince wearing golden armor\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:14, 3.32it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.49it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.54it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.57it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.58it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.58it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.59it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.59it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.59it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.59it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.59it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.59it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.59it/s]\n 28%|██▊ | 14/50 [00:03<00:10, 3.59it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.59it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.59it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.59it/s]\n 36%|███▌ | 18/50 [00:05<00:08, 3.59it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.59it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.58it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.59it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.58it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.59it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.59it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.58it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.58it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.58it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.58it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.58it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.58it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.58it/s]\n 64%|██████▍ | 32/50 [00:08<00:05, 3.58it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.58it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.58it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.57it/s]\n 72%|███████▏ | 36/50 [00:10<00:03, 3.57it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.57it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.57it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.57it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.57it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.57it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.57it/s]\n 86%|████████▌ | 43/50 [00:12<00:01, 3.57it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.57it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.57it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.57it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.57it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.57it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.57it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.56it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.58it/s]",
"metrics": {
"predict_time": 17.673156,
"total_time": 102.995952
},
"output": [
"https://replicate.delivery/pbxt/zj3Zotjsk17kK5V7ePxNAFERj8xEPVEKWmab0eW2iJ9nGStSA/out-0.png"
],
"started_at": "2024-04-23T08:21:42.331796Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/w3rrr9wny5rgj0cf185a6pedp0",
"cancel": "https://api.replicate.com/v1/predictions/w3rrr9wny5rgj0cf185a6pedp0/cancel"
},
"version": "9e6883cda77d4c71a71277c984bd5bffe82500b265b20c9c4d3c144ff5dc8271"
}
Using seed: 21770
Ensuring enough disk space...
Free disk space: 1596964429824
Downloading weights: https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
2024-04-23T08:21:42Z | INFO | [ Initiating ] dest=/src/weights-cache/1de1469304b3a9ac minimum_chunk_size=150M url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
2024-04-23T08:21:44Z | INFO | [ Complete ] dest=/src/weights-cache/1de1469304b3a9ac size="186 MB" total_elapsed=1.727s url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
b''
Downloaded weights in 1.7760472297668457 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1>, a prince wearing golden armor
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:14, 3.32it/s]
4%|▍ | 2/50 [00:00<00:13, 3.49it/s]
6%|▌ | 3/50 [00:00<00:13, 3.54it/s]
8%|▊ | 4/50 [00:01<00:12, 3.57it/s]
10%|█ | 5/50 [00:01<00:12, 3.58it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.58it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.59it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.59it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.59it/s]
20%|██ | 10/50 [00:02<00:11, 3.59it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.59it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.59it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.59it/s]
28%|██▊ | 14/50 [00:03<00:10, 3.59it/s]
30%|███ | 15/50 [00:04<00:09, 3.59it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.59it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.59it/s]
36%|███▌ | 18/50 [00:05<00:08, 3.59it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.59it/s]
40%|████ | 20/50 [00:05<00:08, 3.58it/s]
42%|████▏ | 21/50 [00:05<00:08, 3.59it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.58it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.59it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.59it/s]
50%|█████ | 25/50 [00:06<00:06, 3.58it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.58it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.58it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.58it/s]
58%|█████▊ | 29/50 [00:08<00:05, 3.58it/s]
60%|██████ | 30/50 [00:08<00:05, 3.58it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.58it/s]
64%|██████▍ | 32/50 [00:08<00:05, 3.58it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.58it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.58it/s]
70%|███████ | 35/50 [00:09<00:04, 3.57it/s]
72%|███████▏ | 36/50 [00:10<00:03, 3.57it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.57it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.57it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.57it/s]
80%|████████ | 40/50 [00:11<00:02, 3.57it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.57it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.57it/s]
86%|████████▌ | 43/50 [00:12<00:01, 3.57it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.57it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.57it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.57it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.57it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.57it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.57it/s]
100%|██████████| 50/50 [00:13<00:00, 3.56it/s]
100%|██████████| 50/50 [00:13<00:00, 3.58it/s]
This example was created by a different version, mdzor/game-assets:9e6883cd.