You're looking at a specific version of this model. Jump to the model overview.
melgor /stabledesign_interiordesign:5e13482e
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run melgor/stabledesign_interiordesign using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"melgor/stabledesign_interiordesign:5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0",
{
input: {
seed: 35853,
prompt: "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury.",
img_size: 640,
strength: 0.9,
num_steps: 50,
image_base: "https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg",
guidance_scale: 10
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run melgor/stabledesign_interiordesign using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"melgor/stabledesign_interiordesign:5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0",
input={
"seed": 35853,
"prompt": "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury.",
"img_size": 640,
"strength": 0.9,
"num_steps": 50,
"image_base": "https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg",
"guidance_scale": 10
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run melgor/stabledesign_interiordesign using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0",
"input": {
"seed": 35853,
"prompt": "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury.",
"img_size": 640,
"strength": 0.9,
"num_steps": 50,
"image_base": "https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg",
"guidance_scale": 10
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/melgor/stabledesign_interiordesign@sha256:5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0 \
-i 'seed=35853' \
-i 'prompt="A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury."' \
-i 'img_size=640' \
-i 'strength=0.9' \
-i 'num_steps=50' \
-i 'image_base="https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg"' \
-i 'guidance_scale=10'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/melgor/stabledesign_interiordesign@sha256:5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 35853, "prompt": "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury.", "img_size": 640, "strength": 0.9, "num_steps": 50, "image_base": "https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg", "guidance_scale": 10 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0077. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-06-17T13:37:22.508770Z",
"created_at": "2024-06-17T13:30:54.561000Z",
"data_removed": false,
"error": null,
"id": "z6b9q5dww5rgp0cg4sj91cnv1r",
"input": {
"seed": 35853,
"prompt": "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury.",
"img_size": 640,
"strength": 0.9,
"num_steps": 50,
"image_base": "https://replicate.delivery/pbxt/L71nWgMUQvH7zKHG3U9YYdfREv1ybOfO1Q5ntak3YmUJizSR/image_0.jpg",
"guidance_scale": 10
},
"logs": "/root/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)\nreturn F.conv2d(input, weight, bias, self.stride,\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:07, 6.68it/s]\n 8%|▊ | 4/50 [00:00<00:02, 15.39it/s]\n 14%|█▍ | 7/50 [00:00<00:02, 18.52it/s]\n 20%|██ | 10/50 [00:00<00:02, 19.84it/s]\n 26%|██▌ | 13/50 [00:00<00:01, 20.74it/s]\n 32%|███▏ | 16/50 [00:00<00:01, 21.31it/s]\n 38%|███▊ | 19/50 [00:00<00:01, 21.66it/s]\n 44%|████▍ | 22/50 [00:01<00:01, 21.90it/s]\n 50%|█████ | 25/50 [00:01<00:01, 22.06it/s]\n 56%|█████▌ | 28/50 [00:01<00:00, 22.17it/s]\n 62%|██████▏ | 31/50 [00:01<00:00, 22.22it/s]\n 68%|██████▊ | 34/50 [00:01<00:00, 22.03it/s]\n 74%|███████▍ | 37/50 [00:01<00:00, 22.10it/s]\n 80%|████████ | 40/50 [00:01<00:00, 22.11it/s]\n 86%|████████▌ | 43/50 [00:02<00:00, 22.17it/s]\n 92%|█████████▏| 46/50 [00:02<00:00, 22.21it/s]\n 98%|█████████▊| 49/50 [00:02<00:00, 22.19it/s]\n100%|██████████| 50/50 [00:02<00:00, 21.25it/s]\n 0%| | 0/45 [00:00<?, ?it/s]\n 2%|▏ | 1/45 [00:00<00:07, 6.14it/s]\n 7%|▋ | 3/45 [00:00<00:04, 9.30it/s]\n 11%|█ | 5/45 [00:00<00:03, 10.74it/s]\n 16%|█▌ | 7/45 [00:00<00:03, 11.46it/s]\n 20%|██ | 9/45 [00:00<00:03, 11.86it/s]\n 24%|██▍ | 11/45 [00:00<00:02, 12.11it/s]\n 29%|██▉ | 13/45 [00:01<00:02, 12.25it/s]\n 33%|███▎ | 15/45 [00:01<00:02, 12.35it/s]\n 38%|███▊ | 17/45 [00:01<00:02, 12.42it/s]\n 42%|████▏ | 19/45 [00:01<00:02, 12.45it/s]\n 47%|████▋ | 21/45 [00:01<00:01, 12.48it/s]\n 51%|█████ | 23/45 [00:01<00:01, 12.50it/s]\n 56%|█████▌ | 25/45 [00:02<00:01, 12.52it/s]\n 60%|██████ | 27/45 [00:02<00:01, 12.54it/s]\n 64%|██████▍ | 29/45 [00:02<00:01, 12.55it/s]\n 69%|██████▉ | 31/45 [00:02<00:01, 12.56it/s]\n 73%|███████▎ | 33/45 [00:02<00:00, 12.56it/s]\n 78%|███████▊ | 35/45 [00:02<00:00, 12.57it/s]\n 82%|████████▏ | 37/45 [00:03<00:00, 12.58it/s]\n 87%|████████▋ | 39/45 [00:03<00:00, 12.57it/s]\n 91%|█████████ | 41/45 [00:03<00:00, 12.58it/s]\n 96%|█████████▌| 43/45 [00:03<00:00, 12.61it/s]\n100%|██████████| 45/45 [00:03<00:00, 12.62it/s]\n100%|██████████| 45/45 [00:03<00:00, 12.24it/s]",
"metrics": {
"predict_time": 11.483450089,
"total_time": 387.94777
},
"output": "https://replicate.delivery/pbxt/xyCGKiWjs04hKRFZaGOfSqgTCsO1spe53eMr5OBbcenHh79LB/design.png",
"started_at": "2024-06-17T13:37:11.025319Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/z6b9q5dww5rgp0cg4sj91cnv1r",
"cancel": "https://api.replicate.com/v1/predictions/z6b9q5dww5rgp0cg4sj91cnv1r/cancel"
},
"version": "5e13482ea317670bfc797bb18bace359860a721a39b5bbcaa1ffcd241d62bca0"
}
/root/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
return F.conv2d(input, weight, bias, self.stride,
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:07, 6.68it/s]
8%|▊ | 4/50 [00:00<00:02, 15.39it/s]
14%|█▍ | 7/50 [00:00<00:02, 18.52it/s]
20%|██ | 10/50 [00:00<00:02, 19.84it/s]
26%|██▌ | 13/50 [00:00<00:01, 20.74it/s]
32%|███▏ | 16/50 [00:00<00:01, 21.31it/s]
38%|███▊ | 19/50 [00:00<00:01, 21.66it/s]
44%|████▍ | 22/50 [00:01<00:01, 21.90it/s]
50%|█████ | 25/50 [00:01<00:01, 22.06it/s]
56%|█████▌ | 28/50 [00:01<00:00, 22.17it/s]
62%|██████▏ | 31/50 [00:01<00:00, 22.22it/s]
68%|██████▊ | 34/50 [00:01<00:00, 22.03it/s]
74%|███████▍ | 37/50 [00:01<00:00, 22.10it/s]
80%|████████ | 40/50 [00:01<00:00, 22.11it/s]
86%|████████▌ | 43/50 [00:02<00:00, 22.17it/s]
92%|█████████▏| 46/50 [00:02<00:00, 22.21it/s]
98%|█████████▊| 49/50 [00:02<00:00, 22.19it/s]
100%|██████████| 50/50 [00:02<00:00, 21.25it/s]
0%| | 0/45 [00:00<?, ?it/s]
2%|▏ | 1/45 [00:00<00:07, 6.14it/s]
7%|▋ | 3/45 [00:00<00:04, 9.30it/s]
11%|█ | 5/45 [00:00<00:03, 10.74it/s]
16%|█▌ | 7/45 [00:00<00:03, 11.46it/s]
20%|██ | 9/45 [00:00<00:03, 11.86it/s]
24%|██▍ | 11/45 [00:00<00:02, 12.11it/s]
29%|██▉ | 13/45 [00:01<00:02, 12.25it/s]
33%|███▎ | 15/45 [00:01<00:02, 12.35it/s]
38%|███▊ | 17/45 [00:01<00:02, 12.42it/s]
42%|████▏ | 19/45 [00:01<00:02, 12.45it/s]
47%|████▋ | 21/45 [00:01<00:01, 12.48it/s]
51%|█████ | 23/45 [00:01<00:01, 12.50it/s]
56%|█████▌ | 25/45 [00:02<00:01, 12.52it/s]
60%|██████ | 27/45 [00:02<00:01, 12.54it/s]
64%|██████▍ | 29/45 [00:02<00:01, 12.55it/s]
69%|██████▉ | 31/45 [00:02<00:01, 12.56it/s]
73%|███████▎ | 33/45 [00:02<00:00, 12.56it/s]
78%|███████▊ | 35/45 [00:02<00:00, 12.57it/s]
82%|████████▏ | 37/45 [00:03<00:00, 12.58it/s]
87%|████████▋ | 39/45 [00:03<00:00, 12.57it/s]
91%|█████████ | 41/45 [00:03<00:00, 12.58it/s]
96%|█████████▌| 43/45 [00:03<00:00, 12.61it/s]
100%|██████████| 45/45 [00:03<00:00, 12.62it/s]
100%|██████████| 45/45 [00:03<00:00, 12.24it/s]