Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
nightmareai /disco-diffusion:3db33992
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nightmareai/disco-diffusion:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
{
input: {
RN50: false,
RN101: true,
steps: 100,
width: 1280,
RN50x4: false,
ViTB16: false,
ViTB32: true,
ViTL14: true,
height: 768,
prompt: "a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation",
RN50x16: false,
RN50x64: false,
RN50x101: false,
tv_scale: 0,
sat_scale: 0,
skip_augs: false,
ViTL14_336: false,
init_scale: 1000,
skip_steps: 10,
range_scale: 150,
cutn_batches: 4,
display_rate: 20,
target_scale: 20000,
diffusion_model: "512x512_diffusion_uncond_finetune_008100",
clip_guidance_scale: 5000,
use_secondary_model: true,
diffusion_sampling_mode: "plms"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nightmareai/disco-diffusion:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
input={
"RN50": False,
"RN101": True,
"steps": 100,
"width": 1280,
"RN50x4": False,
"ViTB16": False,
"ViTB32": True,
"ViTL14": True,
"height": 768,
"prompt": "a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation",
"RN50x16": False,
"RN50x64": False,
"RN50x101": False,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": False,
"ViTL14_336": False,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": True,
"diffusion_sampling_mode": "plms"
}
)
# The nightmareai/disco-diffusion model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/nightmareai/disco-diffusion/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
"input": {
"RN50": false,
"RN101": true,
"steps": 100,
"width": 1280,
"RN50x4": false,
"ViTB16": false,
"ViTB32": true,
"ViTL14": true,
"height": 768,
"prompt": "a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation",
"RN50x16": false,
"RN50x64": false,
"RN50x101": false,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": false,
"ViTL14_336": false,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "plms"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-10T17:49:56.102752Z",
"created_at": "2022-07-10T17:38:39.033607Z",
"data_removed": false,
"error": null,
"id": "ffhmt2midvhq7g4vqkc6hwodjy",
"input": {
"RN50": false,
"RN101": true,
"steps": 100,
"width": 1280,
"ViTB16": false,
"ViTB32": true,
"ViTL14": true,
"height": 768,
"prompt": "a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation",
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "plms"
},
"logs": "2022-07-10 17:38:39.134 | INFO | dd:start_run:2224 - 💼 1 jobs found.\n2022-07-10 17:38:39.135 | INFO | dd:start_run:2236 - ⚒️ Session 3016cd34-a976-4120-bea9-ab4f516bcb1b started...\n2022-07-10 17:38:39.136 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...\n2022-07-10 17:38:39.136 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...\n2022-07-10 17:38:39.137 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 2061879424\n2022-07-10 17:38:39.138 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-10 17:38:39.138 | INFO | dd:do_run:1190 - 💻 Starting Run: 5c946cae-4a65-4e82-93d4-c75d5ac763d8(0) at frame 0\n2022-07-10 17:38:39.138 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...\n2022-07-10 17:38:48.730 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-L/14'...\n2022-07-10 17:39:03.368 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN101'...\n2022-07-10 17:39:08.345 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...\n2022-07-10 17:39:08.651 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.\n warnings.warn(\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\n warnings.warn(msg)\n\u001b[2K\n2022-07-10 17:39:14.258 | INFO | dd:disco:1502 - timestep_respacing : ddim100 | diffusion_steps: 1000\n2022-07-10 17:39:14.259 | INFO | dd:prepModels:1054 - Prepping models...\n2022-07-10 17:39:28.494 | INFO | dd:disco:1532 - Running job '2c1c3bcc-ee12-444a-bca3-97f8b27af298'...\n2022-07-10 17:39:28.495 | INFO | dd:disco:1545 - 🌱 Seed used: 2061879424\n2022-07-10 17:39:28.506 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation']\n\u001b[2K\n\u001b[2K\n\u001b[2K\nBatches: 0%| | 0/1 [00:00<?, ?it/s]\nOutput()\n2022-07-10 17:39:30.302 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n\n\n 0%| | 0/90 [00:00<?, ?it/s]\u001b[A\n\n\nBatch 0, step 0, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>\n 0%| | 0/90 [00:15<?, ?it/s]\u001b[A\n\n 1%| | 1/90 [00:15<22:56, 15.47s/it]\u001b[A\n\n 2%|▏ | 2/90 [00:21<14:34, 9.94s/it]\u001b[A\n\n 3%|▎ | 3/90 [00:27<11:53, 8.20s/it]\u001b[A\n\n 4%|▍ | 4/90 [00:33<10:37, 7.41s/it]\u001b[A\n\n 6%|▌ | 5/90 [00:40<09:54, 7.00s/it]\u001b[A\n\n 7%|▋ | 6/90 [00:46<09:28, 6.77s/it]\u001b[A\n\n 8%|▊ | 7/90 [00:52<09:11, 6.65s/it]\u001b[A\n\n 9%|▉ | 8/90 [00:59<09:01, 6.60s/it]\u001b[A\n\n 10%|█ | 9/90 [01:05<08:53, 6.59s/it]\u001b[A\n\n 11%|█ | 10/90 [01:12<08:47, 6.59s/it]\u001b[A\n\n 12%|█▏ | 11/90 [01:19<08:41, 6.60s/it]\u001b[A\n\n 13%|█▎ | 12/90 [01:25<08:35, 6.61s/it]\u001b[A\n\n 14%|█▍ | 13/90 [01:32<08:29, 6.62s/it]\u001b[A\n\n 16%|█▌ | 14/90 [01:39<08:23, 6.62s/it]\u001b[A\n\n 17%|█▋ | 15/90 [01:45<08:15, 6.61s/it]\u001b[A\n\n 18%|█▊ | 16/90 [01:52<08:07, 6.59s/it]\u001b[A\n\n 19%|█▉ | 17/90 [01:58<07:59, 6.56s/it]\u001b[A\n\n 20%|██ | 18/90 [02:05<07:51, 6.55s/it]\u001b[A\n\n 21%|██ | 19/90 [02:11<07:44, 6.55s/it]\u001b[A\n\n 22%|██▏ | 20/90 [02:18<07:38, 6.55s/it]\u001b[A\n\n\nBatch 0, step 20, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37AF0>\n 22%|██▏ | 20/90 [02:24<07:38, 6.55s/it]\u001b[A\n\n 23%|██▎ | 21/90 [02:25<07:46, 6.76s/it]\u001b[A\n\n 24%|██▍ | 22/90 [02:32<07:35, 6.70s/it]\u001b[A\n\n 26%|██▌ | 23/90 [02:38<07:26, 6.66s/it]\u001b[A\n\n 27%|██▋ | 24/90 [02:45<07:18, 6.64s/it]\u001b[A\n\n 28%|██▊ | 25/90 [02:51<07:10, 6.63s/it]\u001b[A\n\n 29%|██▉ | 26/90 [02:58<07:03, 6.61s/it]\u001b[A\n\n 30%|███ | 27/90 [03:05<06:56, 6.61s/it]\u001b[A\n\n 31%|███ | 28/90 [03:11<06:49, 6.60s/it]\u001b[A\n\n 32%|███▏ | 29/90 [03:18<06:41, 6.59s/it]\u001b[A\n\n 33%|███▎ | 30/90 [03:24<06:34, 6.58s/it]\u001b[A\n\n 34%|███▍ | 31/90 [03:31<06:32, 6.66s/it]\u001b[A\n\n 36%|███▌ | 32/90 [03:38<06:29, 6.72s/it]\u001b[A\n\n 37%|███▋ | 33/90 [03:45<06:25, 6.76s/it]\u001b[A\n\n 38%|███▊ | 34/90 [03:52<06:20, 6.79s/it]\u001b[A\n\n 39%|███▉ | 35/90 [03:58<06:14, 6.81s/it]\u001b[A\n\n 40%|████ | 36/90 [04:05<06:08, 6.82s/it]\u001b[A\n\n 41%|████ | 37/90 [04:12<06:01, 6.82s/it]\u001b[A\n\n 42%|████▏ | 38/90 [04:19<05:55, 6.84s/it]\u001b[A\n\n 43%|████▎ | 39/90 [04:26<05:49, 6.86s/it]\u001b[A\n\nBatch 0, step 40, output 0:\n 44%|████▍ | 40/90 [04:33<05:43, 6.86s/it]\u001b[A\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>\n 44%|████▍ | 40/90 [04:40<05:43, 6.86s/it]\u001b[A\n\n 46%|████▌ | 41/90 [04:40<05:45, 7.06s/it]\u001b[A\n\n 47%|████▋ | 42/90 [04:47<05:35, 6.99s/it]\u001b[A\n\n 48%|████▊ | 43/90 [04:54<05:26, 6.95s/it]\u001b[A\n\n 49%|████▉ | 44/90 [05:01<05:18, 6.92s/it]\u001b[A\n\n 50%|█████ | 45/90 [05:08<05:10, 6.89s/it]\u001b[A\n\n 51%|█████ | 46/90 [05:15<05:02, 6.88s/it]\u001b[A\n\n 52%|█████▏ | 47/90 [05:21<04:55, 6.88s/it]\u001b[A\n\n 53%|█████▎ | 48/90 [05:28<04:48, 6.88s/it]\u001b[A\n\n 54%|█████▍ | 49/90 [05:35<04:42, 6.89s/it]\u001b[A\n\n 56%|█████▌ | 50/90 [05:42<04:35, 6.89s/it]\u001b[A\n\n 57%|█████▋ | 51/90 [05:49<04:28, 6.89s/it]\u001b[A\n\n 58%|█████▊ | 52/90 [05:56<04:21, 6.89s/it]\u001b[A\n\n 59%|█████▉ | 53/90 [06:03<04:15, 6.90s/it]\u001b[A\n\n 60%|██████ | 54/90 [06:10<04:08, 6.89s/it]\u001b[A\n\n 61%|██████ | 55/90 [06:17<04:00, 6.88s/it]\u001b[A\n\n 62%|██████▏ | 56/90 [06:23<03:53, 6.86s/it]\u001b[A\n\n 63%|██████▎ | 57/90 [06:30<03:46, 6.86s/it]\u001b[A\n\n 64%|██████▍ | 58/90 [06:37<03:39, 6.87s/it]\u001b[A\n\n 66%|██████▌ | 59/90 [06:44<03:32, 6.87s/it]\u001b[A\n\n 67%|██████▋ | 60/90 [06:51<03:26, 6.87s/it]\u001b[A\n\n\nBatch 0, step 60, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37C10>\n 67%|██████▋ | 60/90 [06:58<03:26, 6.87s/it]\u001b[A\n\n 68%|██████▊ | 61/90 [06:58<03:25, 7.07s/it]\u001b[A\n\n 69%|██████▉ | 62/90 [07:05<03:16, 7.00s/it]\u001b[A\n\n 70%|███████ | 63/90 [07:12<03:08, 6.97s/it]\u001b[A\n\n 71%|███████ | 64/90 [07:19<03:00, 6.94s/it]\u001b[A\n\n 72%|███████▏ | 65/90 [07:26<02:53, 6.93s/it]\u001b[A\n\n 73%|███████▎ | 66/90 [07:33<02:46, 6.92s/it]\u001b[A\n\n 74%|███████▍ | 67/90 [07:40<02:38, 6.91s/it]\u001b[A\n\n 76%|███████▌ | 68/90 [07:47<02:31, 6.90s/it]\u001b[A\n\n 77%|███████▋ | 69/90 [07:53<02:24, 6.89s/it]\u001b[A\n\n 78%|███████▊ | 70/90 [08:00<02:17, 6.89s/it]\u001b[A\n\n 79%|███████▉ | 71/90 [08:07<02:10, 6.87s/it]\u001b[A\n\n 80%|████████ | 72/90 [08:14<02:03, 6.87s/it]\u001b[A\n\n 81%|████████ | 73/90 [08:21<01:56, 6.87s/it]\u001b[A\n\n 82%|████████▏ | 74/90 [08:28<01:49, 6.86s/it]\u001b[A\n\n 83%|████████▎ | 75/90 [08:35<01:42, 6.86s/it]\u001b[A\n\n 84%|████████▍ | 76/90 [08:41<01:35, 6.86s/it]\u001b[A\n\n 86%|████████▌ | 77/90 [08:48<01:29, 6.85s/it]\u001b[A\n\n 87%|████████▋ | 78/90 [08:55<01:22, 6.85s/it]\u001b[A\n\n 88%|████████▊ | 79/90 [09:02<01:15, 6.85s/it]\u001b[A\n\n 89%|████████▉ | 80/90 [09:09<01:08, 6.86s/it]\u001b[A\nBatch 0, step 80, output 0:\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>\n 89%|████████▉ | 80/90 [09:16<01:08, 6.86s/it]\u001b[A\n\n 90%|█████████ | 81/90 [09:16<01:03, 7.03s/it]\u001b[A\n\n 91%|█████████ | 82/90 [09:23<00:55, 6.97s/it]\u001b[A\n\n 92%|█████████▏| 83/90 [09:30<00:48, 6.93s/it]\u001b[A\n\n 93%|█████████▎| 84/90 [09:37<00:41, 6.91s/it]\u001b[A\n\n 94%|█████████▍| 85/90 [09:44<00:34, 6.89s/it]\u001b[A\n\n 96%|█████████▌| 86/90 [09:51<00:27, 6.88s/it]\u001b[A\n\n 97%|█████████▋| 87/90 [09:57<00:20, 6.88s/it]\u001b[A\n\n 98%|█████████▊| 88/90 [10:04<00:13, 6.88s/it]\u001b[A\n\n 99%|█████████▉| 89/90 [10:11<00:06, 6.89s/it]\u001b[A\n\n\nBatch 0, step 89, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37A60>\n 99%|█████████▉| 89/90 [10:18<00:06, 6.89s/it]\u001b[A2022-07-10 17:49:49.335 | INFO | dd:disco:1820 - Image render completed.\n2022-07-10 17:49:49.736 | INFO | dd:disco:1840 - Image saved to '/src/images_out/5c946cae-4a65-4e82-93d4-c75d5ac763d8/5c946cae-4a65-4e82-93d4-c75d5ac763d8(0)_0.png'\n\n\n100%|██████████| 90/90 [10:19<00:00, 7.15s/it]\u001b[A\n100%|██████████| 90/90 [10:19<00:00, 6.88s/it]\n2022-07-10 17:49:49.737 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-10 17:49:49.738 | SUCCESS | dd:start_run:2245 - ✅ Session 3016cd34-a976-4120-bea9-ab4f516bcb1b finished by user.\n2022-07-10 17:49:49.738 | DEBUG | dd:sendSMS:2530 - Not sending SMS\n2022-07-10 17:49:49.738 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...",
"metrics": {
"predict_time": 676.842882,
"total_time": 677.069145
},
"output": [
"https://replicate.delivery/mgxm/7871aabb-1e03-4fb4-b7fc-9bee49b5e884/progress.png",
"https://replicate.delivery/mgxm/c5227933-7026-480f-91e8-5b15e78f01d0/progress.png",
"https://replicate.delivery/mgxm/f31bd350-4cfa-4e0b-8915-0e8f56c087e5/progress.png",
"https://replicate.delivery/mgxm/8f95d8e3-51ea-482e-9312-baa02335a122/progress.png",
"https://replicate.delivery/mgxm/c9c26b18-04cb-4f5c-9753-e783ff5cb437/progress.png",
"https://replicate.delivery/mgxm/d84bb6fc-96a6-4ab4-b811-cb8f8ff715e5/progress.png",
"https://replicate.delivery/mgxm/38ef3c75-8a67-4b00-829e-b8d4a1e51b16/progress.png"
],
"started_at": "2022-07-10T17:38:39.259870Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ffhmt2midvhq7g4vqkc6hwodjy",
"cancel": "https://api.replicate.com/v1/predictions/ffhmt2midvhq7g4vqkc6hwodjy/cancel"
},
"version": "3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904"
}
2022-07-10 17:38:39.134 | INFO | dd:start_run:2224 - 💼 1 jobs found.
2022-07-10 17:38:39.135 | INFO | dd:start_run:2236 - ⚒️ Session 3016cd34-a976-4120-bea9-ab4f516bcb1b started...
2022-07-10 17:38:39.136 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...
2022-07-10 17:38:39.136 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...
2022-07-10 17:38:39.137 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 2061879424
2022-07-10 17:38:39.138 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-10 17:38:39.138 | INFO | dd:do_run:1190 - 💻 Starting Run: 5c946cae-4a65-4e82-93d4-c75d5ac763d8(0) at frame 0
2022-07-10 17:38:39.138 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...
2022-07-10 17:38:48.730 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-L/14'...
2022-07-10 17:39:03.368 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN101'...
2022-07-10 17:39:08.345 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...
2022-07-10 17:39:08.651 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
warnings.warn(
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
2022-07-10 17:39:14.258 | INFO | dd:disco:1502 - timestep_respacing : ddim100 | diffusion_steps: 1000
2022-07-10 17:39:14.259 | INFO | dd:prepModels:1054 - Prepping models...
2022-07-10 17:39:28.494 | INFO | dd:disco:1532 - Running job '2c1c3bcc-ee12-444a-bca3-97f8b27af298'...
2022-07-10 17:39:28.495 | INFO | dd:disco:1545 - 🌱 Seed used: 2061879424
2022-07-10 17:39:28.506 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['a splendid day at the fair with a hot dog cart on fire, watercolor, trending on artstation']
Batches: 0%| | 0/1 [00:00<?, ?it/s]
Output()
2022-07-10 17:39:30.302 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
0%| | 0/90 [00:00<?, ?it/s]
Batch 0, step 0, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>
0%| | 0/90 [00:15<?, ?it/s]
1%| | 1/90 [00:15<22:56, 15.47s/it]
2%|▏ | 2/90 [00:21<14:34, 9.94s/it]
3%|▎ | 3/90 [00:27<11:53, 8.20s/it]
4%|▍ | 4/90 [00:33<10:37, 7.41s/it]
6%|▌ | 5/90 [00:40<09:54, 7.00s/it]
7%|▋ | 6/90 [00:46<09:28, 6.77s/it]
8%|▊ | 7/90 [00:52<09:11, 6.65s/it]
9%|▉ | 8/90 [00:59<09:01, 6.60s/it]
10%|█ | 9/90 [01:05<08:53, 6.59s/it]
11%|█ | 10/90 [01:12<08:47, 6.59s/it]
12%|█▏ | 11/90 [01:19<08:41, 6.60s/it]
13%|█▎ | 12/90 [01:25<08:35, 6.61s/it]
14%|█▍ | 13/90 [01:32<08:29, 6.62s/it]
16%|█▌ | 14/90 [01:39<08:23, 6.62s/it]
17%|█▋ | 15/90 [01:45<08:15, 6.61s/it]
18%|█▊ | 16/90 [01:52<08:07, 6.59s/it]
19%|█▉ | 17/90 [01:58<07:59, 6.56s/it]
20%|██ | 18/90 [02:05<07:51, 6.55s/it]
21%|██ | 19/90 [02:11<07:44, 6.55s/it]
22%|██▏ | 20/90 [02:18<07:38, 6.55s/it]
Batch 0, step 20, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37AF0>
22%|██▏ | 20/90 [02:24<07:38, 6.55s/it]
23%|██▎ | 21/90 [02:25<07:46, 6.76s/it]
24%|██▍ | 22/90 [02:32<07:35, 6.70s/it]
26%|██▌ | 23/90 [02:38<07:26, 6.66s/it]
27%|██▋ | 24/90 [02:45<07:18, 6.64s/it]
28%|██▊ | 25/90 [02:51<07:10, 6.63s/it]
29%|██▉ | 26/90 [02:58<07:03, 6.61s/it]
30%|███ | 27/90 [03:05<06:56, 6.61s/it]
31%|███ | 28/90 [03:11<06:49, 6.60s/it]
32%|███▏ | 29/90 [03:18<06:41, 6.59s/it]
33%|███▎ | 30/90 [03:24<06:34, 6.58s/it]
34%|███▍ | 31/90 [03:31<06:32, 6.66s/it]
36%|███▌ | 32/90 [03:38<06:29, 6.72s/it]
37%|███▋ | 33/90 [03:45<06:25, 6.76s/it]
38%|███▊ | 34/90 [03:52<06:20, 6.79s/it]
39%|███▉ | 35/90 [03:58<06:14, 6.81s/it]
40%|████ | 36/90 [04:05<06:08, 6.82s/it]
41%|████ | 37/90 [04:12<06:01, 6.82s/it]
42%|████▏ | 38/90 [04:19<05:55, 6.84s/it]
43%|████▎ | 39/90 [04:26<05:49, 6.86s/it]
Batch 0, step 40, output 0:
44%|████▍ | 40/90 [04:33<05:43, 6.86s/it]
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>
44%|████▍ | 40/90 [04:40<05:43, 6.86s/it]
46%|████▌ | 41/90 [04:40<05:45, 7.06s/it]
47%|████▋ | 42/90 [04:47<05:35, 6.99s/it]
48%|████▊ | 43/90 [04:54<05:26, 6.95s/it]
49%|████▉ | 44/90 [05:01<05:18, 6.92s/it]
50%|█████ | 45/90 [05:08<05:10, 6.89s/it]
51%|█████ | 46/90 [05:15<05:02, 6.88s/it]
52%|█████▏ | 47/90 [05:21<04:55, 6.88s/it]
53%|█████▎ | 48/90 [05:28<04:48, 6.88s/it]
54%|█████▍ | 49/90 [05:35<04:42, 6.89s/it]
56%|█████▌ | 50/90 [05:42<04:35, 6.89s/it]
57%|█████▋ | 51/90 [05:49<04:28, 6.89s/it]
58%|█████▊ | 52/90 [05:56<04:21, 6.89s/it]
59%|█████▉ | 53/90 [06:03<04:15, 6.90s/it]
60%|██████ | 54/90 [06:10<04:08, 6.89s/it]
61%|██████ | 55/90 [06:17<04:00, 6.88s/it]
62%|██████▏ | 56/90 [06:23<03:53, 6.86s/it]
63%|██████▎ | 57/90 [06:30<03:46, 6.86s/it]
64%|██████▍ | 58/90 [06:37<03:39, 6.87s/it]
66%|██████▌ | 59/90 [06:44<03:32, 6.87s/it]
67%|██████▋ | 60/90 [06:51<03:26, 6.87s/it]
Batch 0, step 60, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37C10>
67%|██████▋ | 60/90 [06:58<03:26, 6.87s/it]
68%|██████▊ | 61/90 [06:58<03:25, 7.07s/it]
69%|██████▉ | 62/90 [07:05<03:16, 7.00s/it]
70%|███████ | 63/90 [07:12<03:08, 6.97s/it]
71%|███████ | 64/90 [07:19<03:00, 6.94s/it]
72%|███████▏ | 65/90 [07:26<02:53, 6.93s/it]
73%|███████▎ | 66/90 [07:33<02:46, 6.92s/it]
74%|███████▍ | 67/90 [07:40<02:38, 6.91s/it]
76%|███████▌ | 68/90 [07:47<02:31, 6.90s/it]
77%|███████▋ | 69/90 [07:53<02:24, 6.89s/it]
78%|███████▊ | 70/90 [08:00<02:17, 6.89s/it]
79%|███████▉ | 71/90 [08:07<02:10, 6.87s/it]
80%|████████ | 72/90 [08:14<02:03, 6.87s/it]
81%|████████ | 73/90 [08:21<01:56, 6.87s/it]
82%|████████▏ | 74/90 [08:28<01:49, 6.86s/it]
83%|████████▎ | 75/90 [08:35<01:42, 6.86s/it]
84%|████████▍ | 76/90 [08:41<01:35, 6.86s/it]
86%|████████▌ | 77/90 [08:48<01:29, 6.85s/it]
87%|████████▋ | 78/90 [08:55<01:22, 6.85s/it]
88%|████████▊ | 79/90 [09:02<01:15, 6.85s/it]
89%|████████▉ | 80/90 [09:09<01:08, 6.86s/it]
Batch 0, step 80, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37B50>
89%|████████▉ | 80/90 [09:16<01:08, 6.86s/it]
90%|█████████ | 81/90 [09:16<01:03, 7.03s/it]
91%|█████████ | 82/90 [09:23<00:55, 6.97s/it]
92%|█████████▏| 83/90 [09:30<00:48, 6.93s/it]
93%|█████████▎| 84/90 [09:37<00:41, 6.91s/it]
94%|█████████▍| 85/90 [09:44<00:34, 6.89s/it]
96%|█████████▌| 86/90 [09:51<00:27, 6.88s/it]
97%|█████████▋| 87/90 [09:57<00:20, 6.88s/it]
98%|█████████▊| 88/90 [10:04<00:13, 6.88s/it]
99%|█████████▉| 89/90 [10:11<00:06, 6.89s/it]
Batch 0, step 89, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F64E7D37A60>
99%|█████████▉| 89/90 [10:18<00:06, 6.89s/it]2022-07-10 17:49:49.335 | INFO | dd:disco:1820 - Image render completed.
2022-07-10 17:49:49.736 | INFO | dd:disco:1840 - Image saved to '/src/images_out/5c946cae-4a65-4e82-93d4-c75d5ac763d8/5c946cae-4a65-4e82-93d4-c75d5ac763d8(0)_0.png'
100%|██████████| 90/90 [10:19<00:00, 7.15s/it]
100%|██████████| 90/90 [10:19<00:00, 6.88s/it]
2022-07-10 17:49:49.737 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-10 17:49:49.738 | SUCCESS | dd:start_run:2245 - ✅ Session 3016cd34-a976-4120-bea9-ab4f516bcb1b finished by user.
2022-07-10 17:49:49.738 | DEBUG | dd:sendSMS:2530 - Not sending SMS
2022-07-10 17:49:49.738 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...