Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
nightmareai /disco-diffusion:3db33992
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nightmareai/disco-diffusion:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
{
input: {
RN50: false,
RN101: true,
steps: 250,
width: 1280,
RN50x4: false,
ViTB16: true,
ViTB32: true,
ViTL14: false,
height: 768,
prompt: "a submarine sandwich lost at sea",
RN50x16: false,
RN50x64: false,
RN50x101: false,
tv_scale: 0,
sat_scale: 0,
skip_augs: false,
ViTL14_336: false,
init_scale: 1000,
skip_steps: 10,
range_scale: 150,
cutn_batches: 4,
display_rate: 20,
target_scale: 20000,
diffusion_model: "512x512_diffusion_uncond_finetune_008100",
clip_guidance_scale: 5000,
use_secondary_model: true,
diffusion_sampling_mode: "ddim"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nightmareai/disco-diffusion:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
input={
"RN50": False,
"RN101": True,
"steps": 250,
"width": 1280,
"RN50x4": False,
"ViTB16": True,
"ViTB32": True,
"ViTL14": False,
"height": 768,
"prompt": "a submarine sandwich lost at sea",
"RN50x16": False,
"RN50x64": False,
"RN50x101": False,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": False,
"ViTL14_336": False,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": True,
"diffusion_sampling_mode": "ddim"
}
)
# The nightmareai/disco-diffusion model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/nightmareai/disco-diffusion/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904",
"input": {
"RN50": false,
"RN101": true,
"steps": 250,
"width": 1280,
"RN50x4": false,
"ViTB16": true,
"ViTB32": true,
"ViTL14": false,
"height": 768,
"prompt": "a submarine sandwich lost at sea",
"RN50x16": false,
"RN50x64": false,
"RN50x101": false,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": false,
"ViTL14_336": false,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "ddim"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/nightmareai/disco-diffusion@sha256:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904 \
-i 'RN50=false' \
-i 'RN101=true' \
-i 'steps=250' \
-i 'width=1280' \
-i 'RN50x4=false' \
-i 'ViTB16=true' \
-i 'ViTB32=true' \
-i 'ViTL14=false' \
-i 'height=768' \
-i 'prompt="a submarine sandwich lost at sea"' \
-i 'RN50x16=false' \
-i 'RN50x64=false' \
-i 'RN50x101=false' \
-i 'tv_scale=0' \
-i 'sat_scale=0' \
-i 'skip_augs=false' \
-i 'ViTL14_336=false' \
-i 'init_scale=1000' \
-i 'skip_steps=10' \
-i 'range_scale=150' \
-i 'cutn_batches=4' \
-i 'display_rate=20' \
-i 'target_scale=20000' \
-i 'diffusion_model="512x512_diffusion_uncond_finetune_008100"' \
-i 'clip_guidance_scale=5000' \
-i 'use_secondary_model=true' \
-i 'diffusion_sampling_mode="ddim"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/nightmareai/disco-diffusion@sha256:3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "RN50": false, "RN101": true, "steps": 250, "width": 1280, "RN50x4": false, "ViTB16": true, "ViTB32": true, "ViTL14": false, "height": 768, "prompt": "a submarine sandwich lost at sea", "RN50x16": false, "RN50x64": false, "RN50x101": false, "tv_scale": 0, "sat_scale": 0, "skip_augs": false, "ViTL14_336": false, "init_scale": 1000, "skip_steps": 10, "range_scale": 150, "cutn_batches": 4, "display_rate": 20, "target_scale": 20000, "diffusion_model": "512x512_diffusion_uncond_finetune_008100", "clip_guidance_scale": 5000, "use_secondary_model": true, "diffusion_sampling_mode": "ddim" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $1.15. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-11T15:05:37.539941Z",
"created_at": "2022-07-11T14:46:54.122608Z",
"data_removed": false,
"error": null,
"id": "g3zigqtpjjffxbx6u3ayjmulg4",
"input": {
"RN50": false,
"RN101": true,
"steps": 250,
"width": 1280,
"ViTB16": true,
"ViTB32": true,
"ViTL14": false,
"height": 768,
"prompt": "a submarine sandwich lost at sea",
"ViTL14_336": false,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "ddim"
},
"logs": "2022-07-11 14:57:30.637 | INFO | dd:start_run:2224 - 💼 1 jobs found.\n2022-07-11 14:57:30.638 | INFO | dd:start_run:2236 - ⚒️ Session 11c90c0a-f2d8-4aa4-acd8-60fe77c69493 started...\n2022-07-11 14:57:30.638 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...\n2022-07-11 14:57:30.638 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...\n2022-07-11 14:57:30.639 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 662228741\n2022-07-11 14:57:30.639 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-11 14:57:30.639 | INFO | dd:do_run:1190 - 💻 Starting Run: f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1(0) at frame 0\n2022-07-11 14:57:30.640 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...\n2022-07-11 14:57:35.640 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/16'...\n2022-07-11 14:57:39.823 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN101'...\n2022-07-11 14:57:43.869 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...\n2022-07-11 14:57:44.018 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.\n warnings.warn(\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\n warnings.warn(msg)\n\u001b[2K\n2022-07-11 14:57:45.803 | INFO | dd:disco:1502 - timestep_respacing : ddim250 | diffusion_steps: 1000\n2022-07-11 14:57:45.803 | INFO | dd:prepModels:1054 - Prepping models...\n2022-07-11 14:57:53.329 | INFO | dd:disco:1532 - Running job '857b2d27-d54e-4ec7-8496-39cf3c4b6fee'...\n2022-07-11 14:57:53.329 | INFO | dd:disco:1545 - 🌱 Seed used: 662228741\n2022-07-11 14:57:53.332 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['a submarine sandwich lost at sea']\n\u001b[2K\n\u001b[2K\n\u001b[2K\nBatches: 0%| | 0/1 [00:00<?, ?it/s]\nOutput()\n2022-07-11 14:57:53.398 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n\n\n 0%| | 0/240 [00:00<?, ?it/s]\u001b[A\n\n\n\u001b[A\nBatch 0, step 0, output 0:\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF460>\n 0%| | 0/240 [00:01<?, ?it/s]\u001b[A\n\n 0%| | 1/240 [00:02<08:06, 2.04s/it]\u001b[A\n\n 1%| | 2/240 [00:03<07:26, 1.88s/it]\u001b[A\n\n 1%|▏ | 3/240 [00:05<07:13, 1.83s/it]\u001b[A\n\n 2%|▏ | 4/240 [00:07<07:04, 1.80s/it]\u001b[A\n\n 2%|▏ | 5/240 [00:09<06:57, 1.78s/it]\u001b[A\n\n 2%|▎ | 6/240 [00:10<06:53, 1.77s/it]\u001b[A\n\n 3%|▎ | 7/240 [00:12<06:49, 1.76s/it]\u001b[A\n\n 3%|▎ | 8/240 [00:14<06:47, 1.76s/it]\u001b[A\n\n 4%|▍ | 9/240 [00:16<06:46, 1.76s/it]\u001b[A\n\n 4%|▍ | 10/240 [00:17<06:43, 1.76s/it]\u001b[A\n\n 5%|▍ | 11/240 [00:19<06:43, 1.76s/it]\u001b[A\n\n 5%|▌ | 12/240 [00:21<06:40, 1.76s/it]\u001b[A\n\n 5%|▌ | 13/240 [00:23<06:38, 1.76s/it]\u001b[A\n\n 6%|▌ | 14/240 [00:24<06:37, 1.76s/it]\u001b[A\n\n 6%|▋ | 15/240 [00:26<06:35, 1.76s/it]\u001b[A\n\n 7%|▋ | 16/240 [00:28<06:33, 1.76s/it]\u001b[A\n\n 7%|▋ | 17/240 [00:30<06:31, 1.76s/it]\u001b[A\n\n 8%|▊ | 18/240 [00:31<06:29, 1.75s/it]\u001b[A\n\n 8%|▊ | 19/240 [00:33<06:27, 1.75s/it]\u001b[A\n\n 8%|▊ | 20/240 [00:35<06:26, 1.75s/it]\u001b[A\n\n\n\u001b[A\nBatch 0, step 20, output 0:\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF580>\n 8%|▊ | 20/240 [00:37<06:26, 1.75s/it]\u001b[A\n\n 9%|▉ | 21/240 [00:37<06:42, 1.84s/it]\u001b[A\n\n 9%|▉ | 22/240 [00:39<06:35, 1.81s/it]\u001b[A\n\n 10%|▉ | 23/240 [00:40<06:30, 1.80s/it]\u001b[A\n\n 10%|█ | 24/240 [00:42<06:26, 1.79s/it]\u001b[A\n\n 10%|█ | 25/240 [00:44<06:22, 1.78s/it]\u001b[A\n\n 11%|█ | 26/240 [00:46<06:21, 1.78s/it]\u001b[A\n\n 11%|█▏ | 27/240 [00:48<06:18, 1.78s/it]\u001b[A\n\n 12%|█▏ | 28/240 [00:49<06:15, 1.77s/it]\u001b[A\n\n 12%|█▏ | 29/240 [00:51<06:12, 1.76s/it]\u001b[A\n\n 12%|█▎ | 30/240 [00:53<06:09, 1.76s/it]\u001b[A\n\n 13%|█▎ | 31/240 [00:55<06:07, 1.76s/it]\u001b[A\n\n 13%|█▎ | 32/240 [00:56<06:06, 1.76s/it]\u001b[A\n\n 14%|█▍ | 33/240 [00:58<06:02, 1.75s/it]\u001b[A\n\n 14%|█▍ | 34/240 [01:00<05:59, 1.75s/it]\u001b[A\n\n 15%|█▍ | 35/240 [01:01<05:57, 1.74s/it]\u001b[A\n\n 15%|█▌ | 36/240 [01:03<05:57, 1.75s/it]\u001b[A\n\n 15%|█▌ | 37/240 [01:05<05:54, 1.75s/it]\u001b[A\n\n 16%|█▌ | 38/240 [01:07<05:54, 1.75s/it]\u001b[A\n\n 16%|█▋ | 39/240 [01:09<05:52, 1.75s/it]\u001b[A\n\n 17%|█▋ | 40/240 [01:10<05:51, 1.76s/it]\u001b[A\n\n\n\u001b[A\nBatch 0, step 40, output 0:\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF610>\n 17%|█▋ | 40/240 [01:12<05:51, 1.76s/it]\u001b[A\n\n 17%|█▋ | 41/240 [01:13<06:20, 1.91s/it]\u001b[A\n\n 18%|█▊ | 42/240 [01:14<06:10, 1.87s/it]\u001b[A\n\n 18%|█▊ | 43/240 [01:16<06:00, 1.83s/it]\u001b[A\n\n 18%|█▊ | 44/240 [01:18<05:55, 1.81s/it]\u001b[A\n\n 19%|█▉ | 45/240 [01:20<05:49, 1.79s/it]\u001b[A\n\n 19%|█▉ | 46/240 [01:21<05:44, 1.78s/it]\u001b[A\n\n 20%|█▉ | 47/240 [01:23<05:40, 1.77s/it]\u001b[A\n\n 20%|██ | 48/240 [01:25<05:37, 1.76s/it]\u001b[A\n\n 20%|██ | 49/240 [01:27<05:35, 1.76s/it]\u001b[A\n\n 21%|██ | 50/240 [01:28<05:32, 1.75s/it]\u001b[A\n\n 21%|██▏ | 51/240 [01:30<05:30, 1.75s/it]\u001b[A\n\n 22%|██▏ | 52/240 [01:32<05:29, 1.75s/it]\u001b[A\n\n 22%|██▏ | 53/240 [01:34<05:27, 1.75s/it]\u001b[A\n\n 22%|██▎ | 54/240 [01:35<05:27, 1.76s/it]\u001b[A\n\n 23%|██▎ | 55/240 [01:37<05:24, 1.76s/it]\u001b[A\n\n 23%|██▎ | 56/240 [01:39<05:23, 1.76s/it]\u001b[A\n\n 24%|██▍ | 57/240 [01:41<05:20, 1.75s/it]\u001b[A\n\n 24%|██▍ | 58/240 [01:42<05:18, 1.75s/it]\u001b[A\n\n 25%|██▍ | 59/240 [01:44<05:16, 1.75s/it]\u001b[A\n\n 25%|██▌ | 60/240 [01:46<05:16, 1.76s/it]\u001b[A\n\n\nBatch 0, step 60, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFDF0>\n 25%|██▌ | 60/240 [01:48<05:16, 1.76s/it]\u001b[A\n\n 25%|██▌ | 61/240 [01:48<05:53, 1.97s/it]\u001b[A\n\n 26%|██▌ | 62/240 [01:50<05:39, 1.91s/it]\u001b[A\n\n 26%|██▋ | 63/240 [01:52<05:29, 1.86s/it]\u001b[A\n\n 27%|██▋ | 64/240 [01:54<05:22, 1.83s/it]\u001b[A\n\n 27%|██▋ | 65/240 [01:55<05:16, 1.81s/it]\u001b[A\n\n 28%|██▊ | 66/240 [01:57<05:11, 1.79s/it]\u001b[A\n\n 28%|██▊ | 67/240 [01:59<05:07, 1.78s/it]\u001b[A\n\n 28%|██▊ | 68/240 [02:01<05:04, 1.77s/it]\u001b[A\n\n 29%|██▉ | 69/240 [02:02<05:02, 1.77s/it]\u001b[A\n\n 29%|██▉ | 70/240 [02:04<04:58, 1.76s/it]\u001b[A\n\n 30%|██▉ | 71/240 [02:06<04:58, 1.76s/it]\u001b[A\n\n 30%|███ | 72/240 [02:08<04:55, 1.76s/it]\u001b[A\n\n 30%|███ | 73/240 [02:09<04:53, 1.76s/it]\u001b[A\n\n 31%|███ | 74/240 [02:11<04:52, 1.76s/it]\u001b[A\n\n 31%|███▏ | 75/240 [02:13<04:50, 1.76s/it]\u001b[A\n\n 32%|███▏ | 76/240 [02:15<04:48, 1.76s/it]\u001b[A\n\n 32%|███▏ | 77/240 [02:16<04:47, 1.76s/it]\u001b[A\n\n 32%|███▎ | 78/240 [02:18<04:43, 1.75s/it]\u001b[A\n\n 33%|███▎ | 79/240 [02:20<04:42, 1.75s/it]\u001b[A\n\n 33%|███▎ | 80/240 [02:22<04:40, 1.75s/it]\u001b[A\n\n\nBatch 0, step 80, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFEB0>\n 33%|███▎ | 80/240 [02:23<04:40, 1.75s/it]\u001b[A\n\n 34%|███▍ | 81/240 [02:24<05:12, 1.97s/it]\u001b[A\n\n 34%|███▍ | 82/240 [02:26<05:00, 1.90s/it]\u001b[A\n\n 35%|███▍ | 83/240 [02:28<04:52, 1.86s/it]\u001b[A\n\n 35%|███▌ | 84/240 [02:29<04:44, 1.83s/it]\u001b[A\n\n 35%|███▌ | 85/240 [02:31<04:39, 1.80s/it]\u001b[A\n\n 36%|███▌ | 86/240 [02:33<04:35, 1.79s/it]\u001b[A\n\n 36%|███▋ | 87/240 [02:35<04:31, 1.78s/it]\u001b[A\n\n 37%|███▋ | 88/240 [02:36<04:29, 1.77s/it]\u001b[A\n\n 37%|███▋ | 89/240 [02:38<04:27, 1.77s/it]\u001b[A\n\n 38%|███▊ | 90/240 [02:40<04:24, 1.76s/it]\u001b[A\n\n 38%|███▊ | 91/240 [02:42<04:32, 1.83s/it]\u001b[A\n\n 38%|███▊ | 92/240 [02:44<04:35, 1.86s/it]\u001b[A\n\n 39%|███▉ | 93/240 [02:46<04:38, 1.90s/it]\u001b[A\n\n 39%|███▉ | 94/240 [02:48<04:39, 1.92s/it]\u001b[A\n\n 40%|███▉ | 95/240 [02:50<04:39, 1.92s/it]\u001b[A\n\n 40%|████ | 96/240 [02:52<04:37, 1.92s/it]\u001b[A\n\n 40%|████ | 97/240 [02:54<04:36, 1.93s/it]\u001b[A\n\n 41%|████ | 98/240 [02:56<04:35, 1.94s/it]\u001b[A\n\n 41%|████▏ | 99/240 [02:58<04:34, 1.95s/it]\u001b[A\n\n 42%|████▏ | 100/240 [03:00<04:33, 1.96s/it]\u001b[A\n\n\nBatch 0, step 100, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF280>\n 42%|████▏ | 100/240 [03:01<04:33, 1.96s/it]\u001b[A\n\n 42%|████▏ | 101/240 [03:02<04:59, 2.16s/it]\u001b[A\n\n 42%|████▎ | 102/240 [03:04<04:48, 2.09s/it]\u001b[A\n\n 43%|████▎ | 103/240 [03:06<04:41, 2.05s/it]\u001b[A\n\n 43%|████▎ | 104/240 [03:08<04:34, 2.02s/it]\u001b[A\n\n 44%|████▍ | 105/240 [03:10<04:29, 2.00s/it]\u001b[A\n\n 44%|████▍ | 106/240 [03:12<04:25, 1.98s/it]\u001b[A\n\n 45%|████▍ | 107/240 [03:14<04:22, 1.97s/it]\u001b[A\n\n 45%|████▌ | 108/240 [03:16<04:21, 1.98s/it]\u001b[A\n\n 45%|████▌ | 109/240 [03:18<04:19, 1.98s/it]\u001b[A\n\n 46%|████▌ | 110/240 [03:20<04:16, 1.97s/it]\u001b[A\n\n 46%|████▋ | 111/240 [03:22<04:13, 1.96s/it]\u001b[A\n\n 47%|████▋ | 112/240 [03:24<04:10, 1.96s/it]\u001b[A\n\n 47%|████▋ | 113/240 [03:26<04:08, 1.96s/it]\u001b[A\n\n 48%|████▊ | 114/240 [03:28<04:07, 1.97s/it]\u001b[A\n\n 48%|████▊ | 115/240 [03:30<04:05, 1.96s/it]\u001b[A\n\n 48%|████▊ | 116/240 [03:31<04:03, 1.96s/it]\u001b[A\n\n 49%|████▉ | 117/240 [03:33<04:01, 1.96s/it]\u001b[A\n\n 49%|████▉ | 118/240 [03:35<04:00, 1.97s/it]\u001b[A\n\n 50%|████▉ | 119/240 [03:37<03:58, 1.97s/it]\u001b[A\n\n 50%|█████ | 120/240 [03:39<03:55, 1.96s/it]\u001b[A\n\n\nBatch 0, step 120, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF520>\n 50%|█████ | 120/240 [03:41<03:55, 1.96s/it]\u001b[A\n\n 50%|█████ | 121/240 [03:42<04:16, 2.16s/it]\u001b[A\n\n 51%|█████ | 122/240 [03:44<04:07, 2.09s/it]\u001b[A\n\n 51%|█████▏ | 123/240 [03:46<04:01, 2.06s/it]\u001b[A\n\n 52%|█████▏ | 124/240 [03:48<03:56, 2.04s/it]\u001b[A\n\n 52%|█████▏ | 125/240 [03:50<03:52, 2.02s/it]\u001b[A\n\n 52%|█████▎ | 126/240 [03:52<03:49, 2.01s/it]\u001b[A\n\n 53%|█████▎ | 127/240 [03:54<03:45, 2.00s/it]\u001b[A\n\n 53%|█████▎ | 128/240 [03:56<03:42, 1.99s/it]\u001b[A\n\n 54%|█████▍ | 129/240 [03:58<03:39, 1.98s/it]\u001b[A\n\n 54%|█████▍ | 130/240 [04:00<03:36, 1.97s/it]\u001b[A\n\n 55%|█████▍ | 131/240 [04:02<03:34, 1.97s/it]\u001b[A\n\n 55%|█████▌ | 132/240 [04:04<03:31, 1.96s/it]\u001b[A\n\n 55%|█████▌ | 133/240 [04:06<03:30, 1.97s/it]\u001b[A\n\n 56%|█████▌ | 134/240 [04:08<03:27, 1.96s/it]\u001b[A\n\n 56%|█████▋ | 135/240 [04:10<03:26, 1.97s/it]\u001b[A\n\n 57%|█████▋ | 136/240 [04:11<03:23, 1.96s/it]\u001b[A\n\n 57%|█████▋ | 137/240 [04:13<03:21, 1.96s/it]\u001b[A\n\n 57%|█████▊ | 138/240 [04:15<03:20, 1.96s/it]\u001b[A\n\n 58%|█████▊ | 139/240 [04:17<03:18, 1.96s/it]\u001b[A\n\n 58%|█████▊ | 140/240 [04:19<03:16, 1.96s/it]\u001b[A\n\n\nBatch 0, step 140, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF910>\n 58%|█████▊ | 140/240 [04:21<03:16, 1.96s/it]\u001b[A\n\n 59%|█████▉ | 141/240 [04:22<03:31, 2.14s/it]\u001b[A\n\n 59%|█████▉ | 142/240 [04:24<03:23, 2.08s/it]\u001b[A\n\n 60%|█████▉ | 143/240 [04:26<03:18, 2.05s/it]\u001b[A\n\n 60%|██████ | 144/240 [04:28<03:13, 2.02s/it]\u001b[A\n\n 60%|██████ | 145/240 [04:30<03:09, 2.00s/it]\u001b[A\n\n 61%|██████ | 146/240 [04:32<03:06, 1.98s/it]\u001b[A\n\n 61%|██████▏ | 147/240 [04:34<03:03, 1.97s/it]\u001b[A\n\n 62%|██████▏ | 148/240 [04:36<03:01, 1.98s/it]\u001b[A\n\n 62%|██████▏ | 149/240 [04:38<02:59, 1.98s/it]\u001b[A\n\n 62%|██████▎ | 150/240 [04:39<02:56, 1.96s/it]\u001b[A\n\n 63%|██████▎ | 151/240 [04:41<02:54, 1.96s/it]\u001b[A\n\n 63%|██████▎ | 152/240 [04:43<02:51, 1.95s/it]\u001b[A\n\n 64%|██████▍ | 153/240 [04:45<02:50, 1.96s/it]\u001b[A\n\n 64%|██████▍ | 154/240 [04:47<02:49, 1.97s/it]\u001b[A\n\n 65%|██████▍ | 155/240 [04:49<02:46, 1.96s/it]\u001b[A\n\n 65%|██████▌ | 156/240 [04:51<02:44, 1.95s/it]\u001b[A\n\n 65%|██████▌ | 157/240 [04:53<02:42, 1.95s/it]\u001b[A\n\n 66%|██████▌ | 158/240 [04:55<02:40, 1.96s/it]\u001b[A\n\n 66%|██████▋ | 159/240 [04:57<02:38, 1.96s/it]\u001b[A\n\n 67%|██████▋ | 160/240 [04:59<02:37, 1.97s/it]\u001b[A\nBatch 0, step 160, output 0:\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFA60>\n 67%|██████▋ | 160/240 [05:01<02:37, 1.97s/it]\u001b[A\n\n 67%|██████▋ | 161/240 [05:02<02:47, 2.12s/it]\u001b[A\n\n 68%|██████▊ | 162/240 [05:03<02:41, 2.07s/it]\u001b[A\n\n 68%|██████▊ | 163/240 [05:05<02:36, 2.04s/it]\u001b[A\n\n 68%|██████▊ | 164/240 [05:07<02:32, 2.01s/it]\u001b[A\n\n 69%|██████▉ | 165/240 [05:09<02:28, 1.99s/it]\u001b[A\n\n 69%|██████▉ | 166/240 [05:11<02:25, 1.97s/it]\u001b[A\n\n 70%|██████▉ | 167/240 [05:13<02:23, 1.96s/it]\u001b[A\n\n 70%|███████ | 168/240 [05:15<02:21, 1.96s/it]\u001b[A\n\n 70%|███████ | 169/240 [05:17<02:19, 1.96s/it]\u001b[A\n\n 71%|███████ | 170/240 [05:19<02:16, 1.96s/it]\u001b[A\n\n 71%|███████▏ | 171/240 [05:21<02:14, 1.95s/it]\u001b[A\n\n 72%|███████▏ | 172/240 [05:23<02:12, 1.95s/it]\u001b[A\n\n 72%|███████▏ | 173/240 [05:25<02:10, 1.95s/it]\u001b[A\n\n 72%|███████▎ | 174/240 [05:27<02:08, 1.95s/it]\u001b[A\n\n 73%|███████▎ | 175/240 [05:29<02:06, 1.95s/it]\u001b[A\n\n 73%|███████▎ | 176/240 [05:31<02:04, 1.95s/it]\u001b[A\n\n 74%|███████▍ | 177/240 [05:33<02:03, 1.95s/it]\u001b[A\n\n 74%|███████▍ | 178/240 [05:35<02:00, 1.95s/it]\u001b[A\n\n 75%|███████▍ | 179/240 [05:37<01:58, 1.95s/it]\u001b[A\n\n 75%|███████▌ | 180/240 [05:39<01:56, 1.95s/it]\u001b[A\n\nBatch 0, step 180, output 0:\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFFA0>\n 75%|███████▌ | 180/240 [05:40<01:56, 1.95s/it]\u001b[A\n\n 75%|███████▌ | 181/240 [05:41<02:03, 2.10s/it]\u001b[A\n\n 76%|███████▌ | 182/240 [05:43<01:58, 2.05s/it]\u001b[A\n\n 76%|███████▋ | 183/240 [05:45<01:55, 2.02s/it]\u001b[A\n\n 77%|███████▋ | 184/240 [05:47<01:52, 2.00s/it]\u001b[A\n\n 77%|███████▋ | 185/240 [05:49<01:49, 1.99s/it]\u001b[A\n\n 78%|███████▊ | 186/240 [05:51<01:46, 1.98s/it]\u001b[A\n\n 78%|███████▊ | 187/240 [05:53<01:44, 1.97s/it]\u001b[A\n\n 78%|███████▊ | 188/240 [05:55<01:42, 1.97s/it]\u001b[A\n\n 79%|███████▉ | 189/240 [05:57<01:40, 1.96s/it]\u001b[A\n\n 79%|███████▉ | 190/240 [05:59<01:38, 1.96s/it]\u001b[A\n\n 80%|███████▉ | 191/240 [06:01<01:35, 1.96s/it]\u001b[A\n\n 80%|████████ | 192/240 [06:02<01:33, 1.96s/it]\u001b[A\n\n 80%|████████ | 193/240 [06:04<01:32, 1.96s/it]\u001b[A\n\n 81%|████████ | 194/240 [06:06<01:30, 1.96s/it]\u001b[A\n\n 81%|████████▏ | 195/240 [06:08<01:28, 1.96s/it]\u001b[A\n\n 82%|████████▏ | 196/240 [06:10<01:26, 1.96s/it]\u001b[A\n\n 82%|████████▏ | 197/240 [06:12<01:24, 1.96s/it]\u001b[A\n\n 82%|████████▎ | 198/240 [06:14<01:22, 1.96s/it]\u001b[A\n\n 83%|████████▎ | 199/240 [06:16<01:20, 1.96s/it]\u001b[A\n\n 83%|████████▎ | 200/240 [06:18<01:18, 1.96s/it]\u001b[A\n\n\nBatch 0, step 200, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF580>\n 83%|████████▎ | 200/240 [06:20<01:18, 1.96s/it]\u001b[A\n\n 84%|████████▍ | 201/240 [06:21<01:21, 2.10s/it]\u001b[A\n\n 84%|████████▍ | 202/240 [06:23<01:18, 2.06s/it]\u001b[A\n\n 85%|████████▍ | 203/240 [06:25<01:15, 2.03s/it]\u001b[A\n\n 85%|████████▌ | 204/240 [06:27<01:12, 2.02s/it]\u001b[A\n\n 85%|████████▌ | 205/240 [06:28<01:10, 2.00s/it]\u001b[A\n\n 86%|████████▌ | 206/240 [06:30<01:07, 1.99s/it]\u001b[A\n\n 86%|████████▋ | 207/240 [06:32<01:05, 1.99s/it]\u001b[A\n\n 87%|████████▋ | 208/240 [06:34<01:03, 1.99s/it]\u001b[A\n\n 87%|████████▋ | 209/240 [06:36<01:01, 1.99s/it]\u001b[A\n\n 88%|████████▊ | 210/240 [06:38<00:59, 1.98s/it]\u001b[A\n\n 88%|████████▊ | 211/240 [06:40<00:57, 1.97s/it]\u001b[A\n\n 88%|████████▊ | 212/240 [06:42<00:55, 1.97s/it]\u001b[A\n\n 89%|████████▉ | 213/240 [06:44<00:53, 1.97s/it]\u001b[A\n\n 89%|████████▉ | 214/240 [06:46<00:51, 1.97s/it]\u001b[A\n\n 90%|████████▉ | 215/240 [06:48<00:49, 1.96s/it]\u001b[A\n\n 90%|█████████ | 216/240 [06:50<00:47, 1.96s/it]\u001b[A\n\n 90%|█████████ | 217/240 [06:52<00:44, 1.95s/it]\u001b[A\n\n 91%|█████████ | 218/240 [06:54<00:42, 1.95s/it]\u001b[A\n\n 91%|█████████▏| 219/240 [06:56<00:41, 1.96s/it]\u001b[A\n\n 92%|█████████▏| 220/240 [06:58<00:39, 1.96s/it]\u001b[A\n\n\nBatch 0, step 220, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF3D0>\n 92%|█████████▏| 220/240 [07:00<00:39, 1.96s/it]\u001b[A\n\n 92%|█████████▏| 221/240 [07:00<00:39, 2.09s/it]\u001b[A\n\n 92%|█████████▎| 222/240 [07:02<00:36, 2.05s/it]\u001b[A\n\n 93%|█████████▎| 223/240 [07:04<00:34, 2.02s/it]\u001b[A\n\n 93%|█████████▎| 224/240 [07:06<00:32, 2.00s/it]\u001b[A\n\n 94%|█████████▍| 225/240 [07:08<00:29, 1.99s/it]\u001b[A\n\n 94%|█████████▍| 226/240 [07:10<00:27, 1.98s/it]\u001b[A\n\n 95%|█████████▍| 227/240 [07:12<00:25, 1.98s/it]\u001b[A\n\n 95%|█████████▌| 228/240 [07:14<00:23, 1.97s/it]\u001b[A\n\n 95%|█████████▌| 229/240 [07:16<00:21, 1.97s/it]\u001b[A\n\n 96%|█████████▌| 230/240 [07:18<00:19, 1.97s/it]\u001b[A\n\n 96%|█████████▋| 231/240 [07:20<00:17, 1.97s/it]\u001b[A\n\n 97%|█████████▋| 232/240 [07:22<00:15, 1.97s/it]\u001b[A\n\n 97%|█████████▋| 233/240 [07:24<00:13, 1.96s/it]\u001b[A\n\n 98%|█████████▊| 234/240 [07:26<00:11, 1.97s/it]\u001b[A\n\n 98%|█████████▊| 235/240 [07:28<00:09, 1.96s/it]\u001b[A\n\n 98%|█████████▊| 236/240 [07:30<00:07, 1.96s/it]\u001b[A\n\n 99%|█████████▉| 237/240 [07:32<00:05, 1.96s/it]\u001b[A\n\n 99%|█████████▉| 238/240 [07:34<00:03, 1.96s/it]\u001b[A\n\n100%|█████████▉| 239/240 [07:36<00:01, 1.97s/it]\u001b[A\nBatch 0, step 239, output 0:\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFF10>\n100%|█████████▉| 239/240 [07:38<00:01, 1.97s/it]\u001b[A2022-07-11 15:05:31.942 | INFO | dd:disco:1820 - Image render completed.\n2022-07-11 15:05:32.314 | INFO | dd:disco:1840 - Image saved to '/src/images_out/f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1/f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1(0)_0.png'\n\n\n100%|██████████| 240/240 [07:38<00:00, 2.20s/it]\u001b[A\n100%|██████████| 240/240 [07:38<00:00, 1.91s/it]\n2022-07-11 15:05:32.314 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-11 15:05:32.315 | SUCCESS | dd:start_run:2245 - ✅ Session 11c90c0a-f2d8-4aa4-acd8-60fe77c69493 finished by user.\n2022-07-11 15:05:32.315 | DEBUG | dd:sendSMS:2530 - Not sending SMS\n2022-07-11 15:05:32.315 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...",
"metrics": {
"predict_time": 486.934334,
"total_time": 1123.417333
},
"output": [
"https://replicate.delivery/mgxm/62e55545-211d-4102-a966-3a2167ef4749/progress.png",
"https://replicate.delivery/mgxm/62c97272-942e-4997-a836-47359a05c24b/progress.png",
"https://replicate.delivery/mgxm/1a19001c-569c-4340-8a7c-ff353db1ba54/progress.png",
"https://replicate.delivery/mgxm/6a4d8d6f-2baf-4594-9dd7-0ab87aae879b/progress.png",
"https://replicate.delivery/mgxm/044e1d04-fc5a-4ddf-be0d-9b0d2f5267fd/progress.png",
"https://replicate.delivery/mgxm/a4a894e1-7e5e-4ad8-9186-fb5a2d5c2c12/progress.png",
"https://replicate.delivery/mgxm/58a7966b-0d9f-4ec5-bef4-65f91cf3f4e0/progress.png",
"https://replicate.delivery/mgxm/2d153c46-d3df-4ba0-8a12-8b532d6c505c/progress.png",
"https://replicate.delivery/mgxm/2aae41d9-8577-4c9f-9ec9-4fc6299170e9/progress.png",
"https://replicate.delivery/mgxm/7c0494e7-4a9f-4b5c-8483-72dc862002b3/progress.png",
"https://replicate.delivery/mgxm/cf14a632-f5c8-4a24-92be-7f8b3d819f6a/progress.png",
"https://replicate.delivery/mgxm/245370f3-7068-4937-a1bb-31246dd7a953/progress.png",
"https://replicate.delivery/mgxm/91791c23-eb01-464d-af24-9f64e1571cd9/progress.png",
"https://replicate.delivery/mgxm/b7a5a326-55d7-406e-a71a-480db5a49329/f79cddc5-2ed9-4497-a3e4-fe01c89eb2c10_0.png"
],
"started_at": "2022-07-11T14:57:30.605607Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/g3zigqtpjjffxbx6u3ayjmulg4",
"cancel": "https://api.replicate.com/v1/predictions/g3zigqtpjjffxbx6u3ayjmulg4/cancel"
},
"version": "3db339922ea7421159874c71c20123079fa9c696849fb7a84da283ca5a9d5904"
}
2022-07-11 14:57:30.637 | INFO | dd:start_run:2224 - 💼 1 jobs found.
2022-07-11 14:57:30.638 | INFO | dd:start_run:2236 - ⚒️ Session 11c90c0a-f2d8-4aa4-acd8-60fe77c69493 started...
2022-07-11 14:57:30.638 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...
2022-07-11 14:57:30.638 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...
2022-07-11 14:57:30.639 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 662228741
2022-07-11 14:57:30.639 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-11 14:57:30.639 | INFO | dd:do_run:1190 - 💻 Starting Run: f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1(0) at frame 0
2022-07-11 14:57:30.640 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...
2022-07-11 14:57:35.640 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/16'...
2022-07-11 14:57:39.823 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN101'...
2022-07-11 14:57:43.869 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...
2022-07-11 14:57:44.018 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
warnings.warn(
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
2022-07-11 14:57:45.803 | INFO | dd:disco:1502 - timestep_respacing : ddim250 | diffusion_steps: 1000
2022-07-11 14:57:45.803 | INFO | dd:prepModels:1054 - Prepping models...
2022-07-11 14:57:53.329 | INFO | dd:disco:1532 - Running job '857b2d27-d54e-4ec7-8496-39cf3c4b6fee'...
2022-07-11 14:57:53.329 | INFO | dd:disco:1545 - 🌱 Seed used: 662228741
2022-07-11 14:57:53.332 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['a submarine sandwich lost at sea']
Batches: 0%| | 0/1 [00:00<?, ?it/s]
Output()
2022-07-11 14:57:53.398 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
0%| | 0/240 [00:00<?, ?it/s]
Batch 0, step 0, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF460>
0%| | 0/240 [00:01<?, ?it/s]
0%| | 1/240 [00:02<08:06, 2.04s/it]
1%| | 2/240 [00:03<07:26, 1.88s/it]
1%|▏ | 3/240 [00:05<07:13, 1.83s/it]
2%|▏ | 4/240 [00:07<07:04, 1.80s/it]
2%|▏ | 5/240 [00:09<06:57, 1.78s/it]
2%|▎ | 6/240 [00:10<06:53, 1.77s/it]
3%|▎ | 7/240 [00:12<06:49, 1.76s/it]
3%|▎ | 8/240 [00:14<06:47, 1.76s/it]
4%|▍ | 9/240 [00:16<06:46, 1.76s/it]
4%|▍ | 10/240 [00:17<06:43, 1.76s/it]
5%|▍ | 11/240 [00:19<06:43, 1.76s/it]
5%|▌ | 12/240 [00:21<06:40, 1.76s/it]
5%|▌ | 13/240 [00:23<06:38, 1.76s/it]
6%|▌ | 14/240 [00:24<06:37, 1.76s/it]
6%|▋ | 15/240 [00:26<06:35, 1.76s/it]
7%|▋ | 16/240 [00:28<06:33, 1.76s/it]
7%|▋ | 17/240 [00:30<06:31, 1.76s/it]
8%|▊ | 18/240 [00:31<06:29, 1.75s/it]
8%|▊ | 19/240 [00:33<06:27, 1.75s/it]
8%|▊ | 20/240 [00:35<06:26, 1.75s/it]
Batch 0, step 20, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF580>
8%|▊ | 20/240 [00:37<06:26, 1.75s/it]
9%|▉ | 21/240 [00:37<06:42, 1.84s/it]
9%|▉ | 22/240 [00:39<06:35, 1.81s/it]
10%|▉ | 23/240 [00:40<06:30, 1.80s/it]
10%|█ | 24/240 [00:42<06:26, 1.79s/it]
10%|█ | 25/240 [00:44<06:22, 1.78s/it]
11%|█ | 26/240 [00:46<06:21, 1.78s/it]
11%|█▏ | 27/240 [00:48<06:18, 1.78s/it]
12%|█▏ | 28/240 [00:49<06:15, 1.77s/it]
12%|█▏ | 29/240 [00:51<06:12, 1.76s/it]
12%|█▎ | 30/240 [00:53<06:09, 1.76s/it]
13%|█▎ | 31/240 [00:55<06:07, 1.76s/it]
13%|█▎ | 32/240 [00:56<06:06, 1.76s/it]
14%|█▍ | 33/240 [00:58<06:02, 1.75s/it]
14%|█▍ | 34/240 [01:00<05:59, 1.75s/it]
15%|█▍ | 35/240 [01:01<05:57, 1.74s/it]
15%|█▌ | 36/240 [01:03<05:57, 1.75s/it]
15%|█▌ | 37/240 [01:05<05:54, 1.75s/it]
16%|█▌ | 38/240 [01:07<05:54, 1.75s/it]
16%|█▋ | 39/240 [01:09<05:52, 1.75s/it]
17%|█▋ | 40/240 [01:10<05:51, 1.76s/it]
Batch 0, step 40, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF610>
17%|█▋ | 40/240 [01:12<05:51, 1.76s/it]
17%|█▋ | 41/240 [01:13<06:20, 1.91s/it]
18%|█▊ | 42/240 [01:14<06:10, 1.87s/it]
18%|█▊ | 43/240 [01:16<06:00, 1.83s/it]
18%|█▊ | 44/240 [01:18<05:55, 1.81s/it]
19%|█▉ | 45/240 [01:20<05:49, 1.79s/it]
19%|█▉ | 46/240 [01:21<05:44, 1.78s/it]
20%|█▉ | 47/240 [01:23<05:40, 1.77s/it]
20%|██ | 48/240 [01:25<05:37, 1.76s/it]
20%|██ | 49/240 [01:27<05:35, 1.76s/it]
21%|██ | 50/240 [01:28<05:32, 1.75s/it]
21%|██▏ | 51/240 [01:30<05:30, 1.75s/it]
22%|██▏ | 52/240 [01:32<05:29, 1.75s/it]
22%|██▏ | 53/240 [01:34<05:27, 1.75s/it]
22%|██▎ | 54/240 [01:35<05:27, 1.76s/it]
23%|██▎ | 55/240 [01:37<05:24, 1.76s/it]
23%|██▎ | 56/240 [01:39<05:23, 1.76s/it]
24%|██▍ | 57/240 [01:41<05:20, 1.75s/it]
24%|██▍ | 58/240 [01:42<05:18, 1.75s/it]
25%|██▍ | 59/240 [01:44<05:16, 1.75s/it]
25%|██▌ | 60/240 [01:46<05:16, 1.76s/it]
Batch 0, step 60, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFDF0>
25%|██▌ | 60/240 [01:48<05:16, 1.76s/it]
25%|██▌ | 61/240 [01:48<05:53, 1.97s/it]
26%|██▌ | 62/240 [01:50<05:39, 1.91s/it]
26%|██▋ | 63/240 [01:52<05:29, 1.86s/it]
27%|██▋ | 64/240 [01:54<05:22, 1.83s/it]
27%|██▋ | 65/240 [01:55<05:16, 1.81s/it]
28%|██▊ | 66/240 [01:57<05:11, 1.79s/it]
28%|██▊ | 67/240 [01:59<05:07, 1.78s/it]
28%|██▊ | 68/240 [02:01<05:04, 1.77s/it]
29%|██▉ | 69/240 [02:02<05:02, 1.77s/it]
29%|██▉ | 70/240 [02:04<04:58, 1.76s/it]
30%|██▉ | 71/240 [02:06<04:58, 1.76s/it]
30%|███ | 72/240 [02:08<04:55, 1.76s/it]
30%|███ | 73/240 [02:09<04:53, 1.76s/it]
31%|███ | 74/240 [02:11<04:52, 1.76s/it]
31%|███▏ | 75/240 [02:13<04:50, 1.76s/it]
32%|███▏ | 76/240 [02:15<04:48, 1.76s/it]
32%|███▏ | 77/240 [02:16<04:47, 1.76s/it]
32%|███▎ | 78/240 [02:18<04:43, 1.75s/it]
33%|███▎ | 79/240 [02:20<04:42, 1.75s/it]
33%|███▎ | 80/240 [02:22<04:40, 1.75s/it]
Batch 0, step 80, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFEB0>
33%|███▎ | 80/240 [02:23<04:40, 1.75s/it]
34%|███▍ | 81/240 [02:24<05:12, 1.97s/it]
34%|███▍ | 82/240 [02:26<05:00, 1.90s/it]
35%|███▍ | 83/240 [02:28<04:52, 1.86s/it]
35%|███▌ | 84/240 [02:29<04:44, 1.83s/it]
35%|███▌ | 85/240 [02:31<04:39, 1.80s/it]
36%|███▌ | 86/240 [02:33<04:35, 1.79s/it]
36%|███▋ | 87/240 [02:35<04:31, 1.78s/it]
37%|███▋ | 88/240 [02:36<04:29, 1.77s/it]
37%|███▋ | 89/240 [02:38<04:27, 1.77s/it]
38%|███▊ | 90/240 [02:40<04:24, 1.76s/it]
38%|███▊ | 91/240 [02:42<04:32, 1.83s/it]
38%|███▊ | 92/240 [02:44<04:35, 1.86s/it]
39%|███▉ | 93/240 [02:46<04:38, 1.90s/it]
39%|███▉ | 94/240 [02:48<04:39, 1.92s/it]
40%|███▉ | 95/240 [02:50<04:39, 1.92s/it]
40%|████ | 96/240 [02:52<04:37, 1.92s/it]
40%|████ | 97/240 [02:54<04:36, 1.93s/it]
41%|████ | 98/240 [02:56<04:35, 1.94s/it]
41%|████▏ | 99/240 [02:58<04:34, 1.95s/it]
42%|████▏ | 100/240 [03:00<04:33, 1.96s/it]
Batch 0, step 100, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF280>
42%|████▏ | 100/240 [03:01<04:33, 1.96s/it]
42%|████▏ | 101/240 [03:02<04:59, 2.16s/it]
42%|████▎ | 102/240 [03:04<04:48, 2.09s/it]
43%|████▎ | 103/240 [03:06<04:41, 2.05s/it]
43%|████▎ | 104/240 [03:08<04:34, 2.02s/it]
44%|████▍ | 105/240 [03:10<04:29, 2.00s/it]
44%|████▍ | 106/240 [03:12<04:25, 1.98s/it]
45%|████▍ | 107/240 [03:14<04:22, 1.97s/it]
45%|████▌ | 108/240 [03:16<04:21, 1.98s/it]
45%|████▌ | 109/240 [03:18<04:19, 1.98s/it]
46%|████▌ | 110/240 [03:20<04:16, 1.97s/it]
46%|████▋ | 111/240 [03:22<04:13, 1.96s/it]
47%|████▋ | 112/240 [03:24<04:10, 1.96s/it]
47%|████▋ | 113/240 [03:26<04:08, 1.96s/it]
48%|████▊ | 114/240 [03:28<04:07, 1.97s/it]
48%|████▊ | 115/240 [03:30<04:05, 1.96s/it]
48%|████▊ | 116/240 [03:31<04:03, 1.96s/it]
49%|████▉ | 117/240 [03:33<04:01, 1.96s/it]
49%|████▉ | 118/240 [03:35<04:00, 1.97s/it]
50%|████▉ | 119/240 [03:37<03:58, 1.97s/it]
50%|█████ | 120/240 [03:39<03:55, 1.96s/it]
Batch 0, step 120, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF520>
50%|█████ | 120/240 [03:41<03:55, 1.96s/it]
50%|█████ | 121/240 [03:42<04:16, 2.16s/it]
51%|█████ | 122/240 [03:44<04:07, 2.09s/it]
51%|█████▏ | 123/240 [03:46<04:01, 2.06s/it]
52%|█████▏ | 124/240 [03:48<03:56, 2.04s/it]
52%|█████▏ | 125/240 [03:50<03:52, 2.02s/it]
52%|█████▎ | 126/240 [03:52<03:49, 2.01s/it]
53%|█████▎ | 127/240 [03:54<03:45, 2.00s/it]
53%|█████▎ | 128/240 [03:56<03:42, 1.99s/it]
54%|█████▍ | 129/240 [03:58<03:39, 1.98s/it]
54%|█████▍ | 130/240 [04:00<03:36, 1.97s/it]
55%|█████▍ | 131/240 [04:02<03:34, 1.97s/it]
55%|█████▌ | 132/240 [04:04<03:31, 1.96s/it]
55%|█████▌ | 133/240 [04:06<03:30, 1.97s/it]
56%|█████▌ | 134/240 [04:08<03:27, 1.96s/it]
56%|█████▋ | 135/240 [04:10<03:26, 1.97s/it]
57%|█████▋ | 136/240 [04:11<03:23, 1.96s/it]
57%|█████▋ | 137/240 [04:13<03:21, 1.96s/it]
57%|█████▊ | 138/240 [04:15<03:20, 1.96s/it]
58%|█████▊ | 139/240 [04:17<03:18, 1.96s/it]
58%|█████▊ | 140/240 [04:19<03:16, 1.96s/it]
Batch 0, step 140, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF910>
58%|█████▊ | 140/240 [04:21<03:16, 1.96s/it]
59%|█████▉ | 141/240 [04:22<03:31, 2.14s/it]
59%|█████▉ | 142/240 [04:24<03:23, 2.08s/it]
60%|█████▉ | 143/240 [04:26<03:18, 2.05s/it]
60%|██████ | 144/240 [04:28<03:13, 2.02s/it]
60%|██████ | 145/240 [04:30<03:09, 2.00s/it]
61%|██████ | 146/240 [04:32<03:06, 1.98s/it]
61%|██████▏ | 147/240 [04:34<03:03, 1.97s/it]
62%|██████▏ | 148/240 [04:36<03:01, 1.98s/it]
62%|██████▏ | 149/240 [04:38<02:59, 1.98s/it]
62%|██████▎ | 150/240 [04:39<02:56, 1.96s/it]
63%|██████▎ | 151/240 [04:41<02:54, 1.96s/it]
63%|██████▎ | 152/240 [04:43<02:51, 1.95s/it]
64%|██████▍ | 153/240 [04:45<02:50, 1.96s/it]
64%|██████▍ | 154/240 [04:47<02:49, 1.97s/it]
65%|██████▍ | 155/240 [04:49<02:46, 1.96s/it]
65%|██████▌ | 156/240 [04:51<02:44, 1.95s/it]
65%|██████▌ | 157/240 [04:53<02:42, 1.95s/it]
66%|██████▌ | 158/240 [04:55<02:40, 1.96s/it]
66%|██████▋ | 159/240 [04:57<02:38, 1.96s/it]
67%|██████▋ | 160/240 [04:59<02:37, 1.97s/it]
Batch 0, step 160, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFA60>
67%|██████▋ | 160/240 [05:01<02:37, 1.97s/it]
67%|██████▋ | 161/240 [05:02<02:47, 2.12s/it]
68%|██████▊ | 162/240 [05:03<02:41, 2.07s/it]
68%|██████▊ | 163/240 [05:05<02:36, 2.04s/it]
68%|██████▊ | 164/240 [05:07<02:32, 2.01s/it]
69%|██████▉ | 165/240 [05:09<02:28, 1.99s/it]
69%|██████▉ | 166/240 [05:11<02:25, 1.97s/it]
70%|██████▉ | 167/240 [05:13<02:23, 1.96s/it]
70%|███████ | 168/240 [05:15<02:21, 1.96s/it]
70%|███████ | 169/240 [05:17<02:19, 1.96s/it]
71%|███████ | 170/240 [05:19<02:16, 1.96s/it]
71%|███████▏ | 171/240 [05:21<02:14, 1.95s/it]
72%|███████▏ | 172/240 [05:23<02:12, 1.95s/it]
72%|███████▏ | 173/240 [05:25<02:10, 1.95s/it]
72%|███████▎ | 174/240 [05:27<02:08, 1.95s/it]
73%|███████▎ | 175/240 [05:29<02:06, 1.95s/it]
73%|███████▎ | 176/240 [05:31<02:04, 1.95s/it]
74%|███████▍ | 177/240 [05:33<02:03, 1.95s/it]
74%|███████▍ | 178/240 [05:35<02:00, 1.95s/it]
75%|███████▍ | 179/240 [05:37<01:58, 1.95s/it]
75%|███████▌ | 180/240 [05:39<01:56, 1.95s/it]
Batch 0, step 180, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFFA0>
75%|███████▌ | 180/240 [05:40<01:56, 1.95s/it]
75%|███████▌ | 181/240 [05:41<02:03, 2.10s/it]
76%|███████▌ | 182/240 [05:43<01:58, 2.05s/it]
76%|███████▋ | 183/240 [05:45<01:55, 2.02s/it]
77%|███████▋ | 184/240 [05:47<01:52, 2.00s/it]
77%|███████▋ | 185/240 [05:49<01:49, 1.99s/it]
78%|███████▊ | 186/240 [05:51<01:46, 1.98s/it]
78%|███████▊ | 187/240 [05:53<01:44, 1.97s/it]
78%|███████▊ | 188/240 [05:55<01:42, 1.97s/it]
79%|███████▉ | 189/240 [05:57<01:40, 1.96s/it]
79%|███████▉ | 190/240 [05:59<01:38, 1.96s/it]
80%|███████▉ | 191/240 [06:01<01:35, 1.96s/it]
80%|████████ | 192/240 [06:02<01:33, 1.96s/it]
80%|████████ | 193/240 [06:04<01:32, 1.96s/it]
81%|████████ | 194/240 [06:06<01:30, 1.96s/it]
81%|████████▏ | 195/240 [06:08<01:28, 1.96s/it]
82%|████████▏ | 196/240 [06:10<01:26, 1.96s/it]
82%|████████▏ | 197/240 [06:12<01:24, 1.96s/it]
82%|████████▎ | 198/240 [06:14<01:22, 1.96s/it]
83%|████████▎ | 199/240 [06:16<01:20, 1.96s/it]
83%|████████▎ | 200/240 [06:18<01:18, 1.96s/it]
Batch 0, step 200, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF580>
83%|████████▎ | 200/240 [06:20<01:18, 1.96s/it]
84%|████████▍ | 201/240 [06:21<01:21, 2.10s/it]
84%|████████▍ | 202/240 [06:23<01:18, 2.06s/it]
85%|████████▍ | 203/240 [06:25<01:15, 2.03s/it]
85%|████████▌ | 204/240 [06:27<01:12, 2.02s/it]
85%|████████▌ | 205/240 [06:28<01:10, 2.00s/it]
86%|████████▌ | 206/240 [06:30<01:07, 1.99s/it]
86%|████████▋ | 207/240 [06:32<01:05, 1.99s/it]
87%|████████▋ | 208/240 [06:34<01:03, 1.99s/it]
87%|████████▋ | 209/240 [06:36<01:01, 1.99s/it]
88%|████████▊ | 210/240 [06:38<00:59, 1.98s/it]
88%|████████▊ | 211/240 [06:40<00:57, 1.97s/it]
88%|████████▊ | 212/240 [06:42<00:55, 1.97s/it]
89%|████████▉ | 213/240 [06:44<00:53, 1.97s/it]
89%|████████▉ | 214/240 [06:46<00:51, 1.97s/it]
90%|████████▉ | 215/240 [06:48<00:49, 1.96s/it]
90%|█████████ | 216/240 [06:50<00:47, 1.96s/it]
90%|█████████ | 217/240 [06:52<00:44, 1.95s/it]
91%|█████████ | 218/240 [06:54<00:42, 1.95s/it]
91%|█████████▏| 219/240 [06:56<00:41, 1.96s/it]
92%|█████████▏| 220/240 [06:58<00:39, 1.96s/it]
Batch 0, step 220, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CF3D0>
92%|█████████▏| 220/240 [07:00<00:39, 1.96s/it]
92%|█████████▏| 221/240 [07:00<00:39, 2.09s/it]
92%|█████████▎| 222/240 [07:02<00:36, 2.05s/it]
93%|█████████▎| 223/240 [07:04<00:34, 2.02s/it]
93%|█████████▎| 224/240 [07:06<00:32, 2.00s/it]
94%|█████████▍| 225/240 [07:08<00:29, 1.99s/it]
94%|█████████▍| 226/240 [07:10<00:27, 1.98s/it]
95%|█████████▍| 227/240 [07:12<00:25, 1.98s/it]
95%|█████████▌| 228/240 [07:14<00:23, 1.97s/it]
95%|█████████▌| 229/240 [07:16<00:21, 1.97s/it]
96%|█████████▌| 230/240 [07:18<00:19, 1.97s/it]
96%|█████████▋| 231/240 [07:20<00:17, 1.97s/it]
97%|█████████▋| 232/240 [07:22<00:15, 1.97s/it]
97%|█████████▋| 233/240 [07:24<00:13, 1.96s/it]
98%|█████████▊| 234/240 [07:26<00:11, 1.97s/it]
98%|█████████▊| 235/240 [07:28<00:09, 1.96s/it]
98%|█████████▊| 236/240 [07:30<00:07, 1.96s/it]
99%|█████████▉| 237/240 [07:32<00:05, 1.96s/it]
99%|█████████▉| 238/240 [07:34<00:03, 1.96s/it]
100%|█████████▉| 239/240 [07:36<00:01, 1.97s/it]
Batch 0, step 239, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7FBDA37CFF10>
100%|█████████▉| 239/240 [07:38<00:01, 1.97s/it]2022-07-11 15:05:31.942 | INFO | dd:disco:1820 - Image render completed.
2022-07-11 15:05:32.314 | INFO | dd:disco:1840 - Image saved to '/src/images_out/f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1/f79cddc5-2ed9-4497-a3e4-fe01c89eb2c1(0)_0.png'
100%|██████████| 240/240 [07:38<00:00, 2.20s/it]
100%|██████████| 240/240 [07:38<00:00, 1.91s/it]
2022-07-11 15:05:32.314 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-11 15:05:32.315 | SUCCESS | dd:start_run:2245 - ✅ Session 11c90c0a-f2d8-4aa4-acd8-60fe77c69493 finished by user.
2022-07-11 15:05:32.315 | DEBUG | dd:sendSMS:2530 - Not sending SMS
2022-07-11 15:05:32.315 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...