You're looking at a specific version of this model. Jump to the model overview.
omerbt /multidiffusion:24dd8961
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run omerbt/multidiffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"omerbt/multidiffusion:24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca",
{
input: {
width: 4096,
height: 512,
prompt: "a photo of a city skyline at night",
scheduler: "DDIM",
num_outputs: 1,
guidance_scale: 7.5,
num_inference_steps: 20
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run omerbt/multidiffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"omerbt/multidiffusion:24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca",
input={
"width": 4096,
"height": 512,
"prompt": "a photo of a city skyline at night",
"scheduler": "DDIM",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 20
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run omerbt/multidiffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca",
"input": {
"width": 4096,
"height": 512,
"prompt": "a photo of a city skyline at night",
"scheduler": "DDIM",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 20
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/omerbt/multidiffusion@sha256:24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca \
-i 'width=4096' \
-i 'height=512' \
-i 'prompt="a photo of a city skyline at night"' \
-i 'scheduler="DDIM"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'num_inference_steps=20'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/omerbt/multidiffusion@sha256:24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 4096, "height": 512, "prompt": "a photo of a city skyline at night", "scheduler": "DDIM", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 20 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-02-24T23:06:53.309387Z",
"created_at": "2023-02-24T23:05:44.172018Z",
"data_removed": false,
"error": null,
"id": "qyiwfho7n5aafjr7oni3zgalwi",
"input": {
"width": 4096,
"height": 512,
"prompt": "a photo of a city skyline at night",
"scheduler": "DDIM",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 20
},
"logs": "Using seed: 57162\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:03<01:03, 3.33s/it]\n 10%|█ | 2/20 [00:06<00:59, 3.30s/it]\n 15%|█▌ | 3/20 [00:09<00:55, 3.28s/it]\n 20%|██ | 4/20 [00:13<00:53, 3.35s/it]\n 25%|██▌ | 5/20 [00:16<00:49, 3.30s/it]\n 30%|███ | 6/20 [00:19<00:44, 3.21s/it]\n 35%|███▌ | 7/20 [00:22<00:41, 3.17s/it]\n 40%|████ | 8/20 [00:25<00:37, 3.14s/it]\n 45%|████▌ | 9/20 [00:28<00:34, 3.14s/it]\n 50%|█████ | 10/20 [00:32<00:32, 3.27s/it]\n 55%|█████▌ | 11/20 [00:35<00:30, 3.35s/it]\n 60%|██████ | 12/20 [00:39<00:27, 3.41s/it]\n 65%|██████▌ | 13/20 [00:43<00:24, 3.44s/it]\n 70%|███████ | 14/20 [00:46<00:20, 3.47s/it]\n 75%|███████▌ | 15/20 [00:50<00:17, 3.48s/it]\n 80%|████████ | 16/20 [00:53<00:13, 3.43s/it]\n 85%|████████▌ | 17/20 [00:56<00:10, 3.43s/it]\n 90%|█████████ | 18/20 [01:00<00:06, 3.42s/it]\n 95%|█████████▌| 19/20 [01:03<00:03, 3.43s/it]\n100%|██████████| 20/20 [01:07<00:00, 3.41s/it]\n100%|██████████| 20/20 [01:07<00:00, 3.35s/it]",
"metrics": {
"predict_time": 69.066816,
"total_time": 69.137369
},
"output": [
"https://replicate.delivery/pbxt/BmhVHMk1Lx5iDh7Ak0Y3EjmP6OeFotuDtOwbFw8pjf0MUvhQA/out-0.png"
],
"started_at": "2023-02-24T23:05:44.242571Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/qyiwfho7n5aafjr7oni3zgalwi",
"cancel": "https://api.replicate.com/v1/predictions/qyiwfho7n5aafjr7oni3zgalwi/cancel"
},
"version": "24dd8961771359f16dfd1238566483fbfa2a90092ed9eeac0337041f45387aca"
}
Using seed: 57162
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:03<01:03, 3.33s/it]
10%|█ | 2/20 [00:06<00:59, 3.30s/it]
15%|█▌ | 3/20 [00:09<00:55, 3.28s/it]
20%|██ | 4/20 [00:13<00:53, 3.35s/it]
25%|██▌ | 5/20 [00:16<00:49, 3.30s/it]
30%|███ | 6/20 [00:19<00:44, 3.21s/it]
35%|███▌ | 7/20 [00:22<00:41, 3.17s/it]
40%|████ | 8/20 [00:25<00:37, 3.14s/it]
45%|████▌ | 9/20 [00:28<00:34, 3.14s/it]
50%|█████ | 10/20 [00:32<00:32, 3.27s/it]
55%|█████▌ | 11/20 [00:35<00:30, 3.35s/it]
60%|██████ | 12/20 [00:39<00:27, 3.41s/it]
65%|██████▌ | 13/20 [00:43<00:24, 3.44s/it]
70%|███████ | 14/20 [00:46<00:20, 3.47s/it]
75%|███████▌ | 15/20 [00:50<00:17, 3.48s/it]
80%|████████ | 16/20 [00:53<00:13, 3.43s/it]
85%|████████▌ | 17/20 [00:56<00:10, 3.43s/it]
90%|█████████ | 18/20 [01:00<00:06, 3.42s/it]
95%|█████████▌| 19/20 [01:03<00:03, 3.43s/it]
100%|██████████| 20/20 [01:07<00:00, 3.41s/it]
100%|██████████| 20/20 [01:07<00:00, 3.35s/it]