Prediction
stability-ai/sdxl:7762fd07ID
ey7z80d79srgj0cgqhpvf0sw7m
Status
Succeeded
Source
Web
Hardware
A40 (Large)
Total duration
Created
Input
- seed
- 44484
- width
- 1024
- height
- 1024
- prompt
- blue jay
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{
"seed": 44484,
"width": 1024,
"height": 1024,
"prompt": "blue jay",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
Install Replicate’s Node.js client library:
npm install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
{
input: {
seed: 44484,
width: 1024,
height: 1024,
prompt: "blue jay",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:
pip install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:
import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
input={
"seed": 44484,
"width": 1024,
"height": 1024,
"prompt": "blue jay",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
"input": {
"seed": 44484,
"width": 1024,
"height": 1024,
"prompt": "blue jay",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{
"completed_at": "2024-07-16T16:43:56.988277Z",
"created_at": "2024-07-16T16:43:41.262000Z",
"data_removed": false,
"error": null,
"id": "ey7z80d79srgj0cgqhpvf0sw7m",
"input": {
"seed": 44484,
"width": 1024,
"height": 1024,
"prompt": "blue jay",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 44484\nPrompt: blue jay\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:09, 4.92it/s]\n 4%|▍ | 2/50 [00:00<00:09, 4.90it/s]\n 6%|▌ | 3/50 [00:00<00:09, 4.89it/s]\n 8%|▊ | 4/50 [00:00<00:09, 4.89it/s]\n 10%|█ | 5/50 [00:01<00:09, 4.87it/s]\n 12%|█▏ | 6/50 [00:01<00:09, 4.85it/s]\n 14%|█▍ | 7/50 [00:01<00:08, 4.85it/s]\n 16%|█▌ | 8/50 [00:01<00:08, 4.85it/s]\n 18%|█▊ | 9/50 [00:01<00:08, 4.85it/s]\n 20%|██ | 10/50 [00:02<00:08, 4.85it/s]\n 22%|██▏ | 11/50 [00:02<00:08, 4.85it/s]\n 24%|██▍ | 12/50 [00:02<00:07, 4.85it/s]\n 26%|██▌ | 13/50 [00:02<00:07, 4.84it/s]\n 28%|██▊ | 14/50 [00:02<00:07, 4.84it/s]\n 30%|███ | 15/50 [00:03<00:07, 4.84it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.83it/s]\n 34%|███▍ | 17/50 [00:03<00:06, 4.84it/s]\n 36%|███▌ | 18/50 [00:03<00:06, 4.84it/s]\n 38%|███▊ | 19/50 [00:03<00:06, 4.84it/s]\n 40%|████ | 20/50 [00:04<00:06, 4.84it/s]\n 42%|████▏ | 21/50 [00:04<00:05, 4.84it/s]\n 44%|████▍ | 22/50 [00:04<00:05, 4.84it/s]\n 46%|████▌ | 23/50 [00:04<00:05, 4.85it/s]\n 48%|████▊ | 24/50 [00:04<00:05, 4.85it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.85it/s]\n 52%|█████▏ | 26/50 [00:05<00:04, 4.85it/s]\n 54%|█████▍ | 27/50 [00:05<00:04, 4.85it/s]\n 56%|█████▌ | 28/50 [00:05<00:04, 4.85it/s]\n 58%|█████▊ | 29/50 [00:05<00:04, 4.85it/s]\n 60%|██████ | 30/50 [00:06<00:04, 4.85it/s]\n 62%|██████▏ | 31/50 [00:06<00:03, 4.85it/s]\n 64%|██████▍ | 32/50 [00:06<00:03, 4.85it/s]\n 66%|██████▌ | 33/50 [00:06<00:03, 4.85it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.85it/s]\n 70%|███████ | 35/50 [00:07<00:03, 4.85it/s]\n 72%|███████▏ | 36/50 [00:07<00:02, 4.85it/s]\n 74%|███████▍ | 37/50 [00:07<00:02, 4.85it/s]\n 76%|███████▌ | 38/50 [00:07<00:02, 4.85it/s]\n 78%|███████▊ | 39/50 [00:08<00:02, 4.85it/s]\n 80%|████████ | 40/50 [00:08<00:02, 4.85it/s]\n 82%|████████▏ | 41/50 [00:08<00:01, 4.85it/s]\n 84%|████████▍ | 42/50 [00:08<00:01, 4.85it/s]\n 86%|████████▌ | 43/50 [00:08<00:01, 4.85it/s]\n 88%|████████▊ | 44/50 [00:09<00:01, 4.85it/s]\n 90%|█████████ | 45/50 [00:09<00:01, 4.85it/s]\n 92%|█████████▏| 46/50 [00:09<00:00, 4.85it/s]\n 94%|█████████▍| 47/50 [00:09<00:00, 4.85it/s]\n 96%|█████████▌| 48/50 [00:09<00:00, 4.85it/s]\n 98%|█████████▊| 49/50 [00:10<00:00, 4.85it/s]\n100%|██████████| 50/50 [00:10<00:00, 4.84it/s]\n100%|██████████| 50/50 [00:10<00:00, 4.85it/s]",
"metrics": {
"predict_time": 12.622904469,
"total_time": 15.726277
},
"output": [
"https://replicate.delivery/pbxt/ManMuEn6Zt58MtqxlAW2mLYiu3fOfFZnQc9x6P5geXJWqKSmA/out-0.png"
],
"started_at": "2024-07-16T16:43:44.365372Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ey7z80d79srgj0cgqhpvf0sw7m",
"cancel": "https://api.replicate.com/v1/predictions/ey7z80d79srgj0cgqhpvf0sw7m/cancel"
},
"version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc"
}
Generated in
Using seed: 44484
Prompt: blue jay
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:09, 4.92it/s]
4%|▍ | 2/50 [00:00<00:09, 4.90it/s]
6%|▌ | 3/50 [00:00<00:09, 4.89it/s]
8%|▊ | 4/50 [00:00<00:09, 4.89it/s]
10%|█ | 5/50 [00:01<00:09, 4.87it/s]
12%|█▏ | 6/50 [00:01<00:09, 4.85it/s]
14%|█▍ | 7/50 [00:01<00:08, 4.85it/s]
16%|█▌ | 8/50 [00:01<00:08, 4.85it/s]
18%|█▊ | 9/50 [00:01<00:08, 4.85it/s]
20%|██ | 10/50 [00:02<00:08, 4.85it/s]
22%|██▏ | 11/50 [00:02<00:08, 4.85it/s]
24%|██▍ | 12/50 [00:02<00:07, 4.85it/s]
26%|██▌ | 13/50 [00:02<00:07, 4.84it/s]
28%|██▊ | 14/50 [00:02<00:07, 4.84it/s]
30%|███ | 15/50 [00:03<00:07, 4.84it/s]
32%|███▏ | 16/50 [00:03<00:07, 4.83it/s]
34%|███▍ | 17/50 [00:03<00:06, 4.84it/s]
36%|███▌ | 18/50 [00:03<00:06, 4.84it/s]
38%|███▊ | 19/50 [00:03<00:06, 4.84it/s]
40%|████ | 20/50 [00:04<00:06, 4.84it/s]
42%|████▏ | 21/50 [00:04<00:05, 4.84it/s]
44%|████▍ | 22/50 [00:04<00:05, 4.84it/s]
46%|████▌ | 23/50 [00:04<00:05, 4.85it/s]
48%|████▊ | 24/50 [00:04<00:05, 4.85it/s]
50%|█████ | 25/50 [00:05<00:05, 4.85it/s]
52%|█████▏ | 26/50 [00:05<00:04, 4.85it/s]
54%|█████▍ | 27/50 [00:05<00:04, 4.85it/s]
56%|█████▌ | 28/50 [00:05<00:04, 4.85it/s]
58%|█████▊ | 29/50 [00:05<00:04, 4.85it/s]
60%|██████ | 30/50 [00:06<00:04, 4.85it/s]
62%|██████▏ | 31/50 [00:06<00:03, 4.85it/s]
64%|██████▍ | 32/50 [00:06<00:03, 4.85it/s]
66%|██████▌ | 33/50 [00:06<00:03, 4.85it/s]
68%|██████▊ | 34/50 [00:07<00:03, 4.85it/s]
70%|███████ | 35/50 [00:07<00:03, 4.85it/s]
72%|███████▏ | 36/50 [00:07<00:02, 4.85it/s]
74%|███████▍ | 37/50 [00:07<00:02, 4.85it/s]
76%|███████▌ | 38/50 [00:07<00:02, 4.85it/s]
78%|███████▊ | 39/50 [00:08<00:02, 4.85it/s]
80%|████████ | 40/50 [00:08<00:02, 4.85it/s]
82%|████████▏ | 41/50 [00:08<00:01, 4.85it/s]
84%|████████▍ | 42/50 [00:08<00:01, 4.85it/s]
86%|████████▌ | 43/50 [00:08<00:01, 4.85it/s]
88%|████████▊ | 44/50 [00:09<00:01, 4.85it/s]
90%|█████████ | 45/50 [00:09<00:01, 4.85it/s]
92%|█████████▏| 46/50 [00:09<00:00, 4.85it/s]
94%|█████████▍| 47/50 [00:09<00:00, 4.85it/s]
96%|█████████▌| 48/50 [00:09<00:00, 4.85it/s]
98%|█████████▊| 49/50 [00:10<00:00, 4.85it/s]
100%|██████████| 50/50 [00:10<00:00, 4.84it/s]
100%|██████████| 50/50 [00:10<00:00, 4.85it/s]